cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A103997 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,          1,             1,               1,
  1,   3,     7,       18,         47,           123,             322,
  1,  11,    71,      539,       4271,         34276,          276119,
  1,  41,   769,    17753,     434657,      10894561,       275770321,
  1, 153,  8449,   603126,   46069729,    3625549353,    289625349454,
  1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
  ...
		

Crossrefs

Rows include A005248, A103998.
Columns 1..7 give A001835(n+1), A334135, A334179, A334180, A334181, A334182, A334183.
Main diagonal gives A334124.

Programs

  • Mathematica
    T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
    Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)

Formula

T(M, N) = Product_{m=1..M} (Product_{n=1..N} 4*sin(Pi*(4*n-1)/(4*N))^2 + 4*cos(Pi*m/(2*M + 1))^2).
For k > 0, T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 15 2020

A232804 Number of perfect matchings in the graph C_6 x C_n.

Original entry on oeis.org

224, 3108, 9922, 90176, 401998, 3113860, 16091936, 114557000, 643041038, 4357599552, 25689719122, 169094614280, 1026275640544, 6640849944580, 40998347400722, 262671237617216, 1637828186763038, 10433179552323108, 65428999765032736, 415409841636546440, 2613799160004664798, 16563343174199239744
Offset: 3

Views

Author

Sergey Perepechko, Nov 30 2013

Keywords

Crossrefs

Row n=3 of A341741.

Formula

G.f: 2*x^3*(112+882*x-8955*x^2-22184*x^3+151298*x^4+192108*x^5-1004174*x^6-773678*x^7+3077791*x^8+1598624*x^9-4646368*x^10-1738444*x^11+3589216*x^12+ 1010882*x^13-1408253*x^14-318388*x^15+271982*x^16+52648*x^17-23250*x^18-4062*x^19+601*x^20+100*x^21)/((1-x)*(1+x)*(1+5*x+x^2)*(1-5*x+x^2)*(1-2*x-x^2)* (1+2*x-x^2)*(1+x-x^2)*(1-x-x^2)*(1-5*x^2+x^4)*(1-6*x-3*x^2+6*x^3+x^4)).

A253678 Number of perfect matchings in the graph C_8 X C_n.

Original entry on oeis.org

1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3

Views

Author

Sergey Perepechko, Jan 09 2015

Keywords

References

  • S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.

Crossrefs

Formula

a(n) = 14*a(n-1) + 145*a(n-2) - 2492*a(n-3) - 5832*a(n-4) + 164332*a(n-5) + 6360*a(n-6) - 5592188*a(n-7) + 5575094*a(n-8) + 111829704*a(n-9) - 176471286*a(n-10) - 1404071060*a(n-11) + 2757391176*a(n-12) + 11493707876*a(n-13) - 26094214040*a(n-14) - 62666476628*a(n-15) + 161092194209*a(n-16) + 229194775110*a(n-17) - 673504262865*a(n-18) - 556186915928*a(n-19) + 1946775340976*a(n-20) + 855365272888*a(n-21) - 3933950269712*a(n-22) - 705783359960*a(n-23) + 5586898052980*a(n-24) - 5586898052980*a(n-26) + 705783359960*a(n-27) + 3933950269712*a(n-28) - 855365272888*a(n-29) - 1946775340976*a(n-30) + 556186915928*a(n-31) + 673504262865*a(n-32) - 229194775110*a(n-33) - 161092194209*a(n-34) + 62666476628*a(n-35) + 26094214040*a(n-36) - 11493707876*a(n-37) - 2757391176*a(n-38) + 1404071060*a(n-39) + 176471286*a(n-40) - 111829704*a(n-41) - 5575094*a(n-42) + 5592188*a(n-43) - 6360*a(n-44) - 164332*a(n-45) + 5832*a(n-46) + 2492*a(n-47) - 145*a(n-48) - 14*a(n-49) + a(n-50).
G.f.: 2*x^3*(529 + 12570*x - 278528*x^2 - 1111096*x^3 + 29622124*x^4 + 15949216*x^5 - 1354335880*x^6 + 1073870160*x^7 + 33231636934*x^8 - 49093408612*x^9 - 484852497568*x^10 + 922702092728*x^11 + 4448623050276*x^12 - 9889298009728*x^13 - 26519860399096*x^14 + 66909591407824*x^15 + 104242913448099*x^16 - 300153880511538*x^17 - 268804327853184*x^18 + 917127529551440*x^19 + 437177534552376*x^20 - 1937370697752896*x^21 - 386856893695952*x^22 + 2851262465341600*x^23 + 31463729114724*x^24 - 2933939639544920*x^25 + 353114911609152*x^26 + 2113468417316080*x^27 - 452714140134072*x^28 - 1064902306141568*x^29 + 302352881352848*x^30 + 373692292484128*x^31 - 126783009087417*x^32 - 90391126093930*x^33 + 35100066280832*x^34 + 14772327002472*x^35 - 6497628908516*x^36 - 1572040067936*x^37 + 799287715544*x^38 + 101192826896*x^39 - 63992712074*x^40 - 3215530756*x^41 + 3212411488*x^42 - 3162664*x^43 - 94666796*x^44 + 3355392*x^45 + 1438440*x^46 - 83696*x^47 - 8091*x^48 + 578*x^49)/((1-x)*(1+x)*(1+4*x+x^2)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)*(1+8*x+16*x^2+8*x^3+x^4)* (1-14*x+34*x^2-14*x^3+x^4)*(1-8*x+16*x^2-8*x^3+x^4)*(1-4*x^2+x^4)*(1+4*x-4*x^2-4*x^3+x^4)*(1+8*x-10*x^2-8*x^3+x^4)*(1-4*x-4*x^2+4*x^3+x^4)*(1-8*x-10*x^2+8*x^3+x^4)*(1-14*x^2+34*x^4-14*x^6+x^8)).

A281679 Number of perfect matchings in the graph C_10 X C_n.

Original entry on oeis.org

5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3

Views

Author

Sergey Perepechko, Jan 26 2017

Keywords

Comments

For even values of m the order of recurrence relation for the number of perfect matchings in C_m X C_n graph does not exceed (3^delta(m/2) + 2*(3/5)^(1 - delta(m/2)))*5^floor(m/4) + 1. Here delta(k) equals 1 for odd values of k and 0 otherwise. If m=10 the above estimate gives 126 for the order of recurrence relation while the exact value equals 118.

Crossrefs

A309018 Number of perfect matchings in the graph C_{12} X C_n.

Original entry on oeis.org

24200, 7379216, 41934482, 4357599552, 55820091938, 3827188349968, 69206906601800, 3876306765700644, 83804387156528018, 4161957566985310208, 100644292294423977842, 4601436044608986037284, 120511830300023778605000, 5179981855242249681088528, 144148769049390803580105218
Offset: 3

Views

Author

Sergey Perepechko, Jul 06 2019

Keywords

Comments

This sequence satisfies a recurrence relation of order 266.

Crossrefs

A341738 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).

Original entry on oeis.org

1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
  1, 2,     7,    16,       41,        98, ...
  1, 2,    25,    72,      361,      1250, ...
  1, 2,   112,   400,     4961,     25088, ...
  1, 2,   529,  2312,    77841,    559682, ...
  1, 2,  2527, 13456,  1270016,  12771458, ...
  1, 2, 12100, 78408, 20967241, 292820000, ...
		

Crossrefs

Main diagonal gives A341782.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));

Formula

If k is odd, T(n,k) = A341533(n,k)/2.

A341739 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).

Original entry on oeis.org

1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
     1,      1,        1,          1,             1, ...
     8,     36,      200,       1156,          6728, ...
    49,    625,    12544,     279841,       6385729, ...
   288,   9216,   583200,   44408896,    3546167328, ...
  1681, 130321, 24611521, 6059221281, 1612940640256, ...
		

Crossrefs

Main diagonal gives A341478(n)^2.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-7 of 7 results.