A103997
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1,
1, 3, 7, 18, 47, 123, 322,
1, 11, 71, 539, 4271, 34276, 276119,
1, 41, 769, 17753, 434657, 10894561, 275770321,
1, 153, 8449, 603126, 46069729, 3625549353, 289625349454,
1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 18.
- W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
- Index entries for sequences related to dominoes
-
T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)
A232804
Number of perfect matchings in the graph C_6 x C_n.
Original entry on oeis.org
224, 3108, 9922, 90176, 401998, 3113860, 16091936, 114557000, 643041038, 4357599552, 25689719122, 169094614280, 1026275640544, 6640849944580, 40998347400722, 262671237617216, 1637828186763038, 10433179552323108, 65428999765032736, 415409841636546440, 2613799160004664798, 16563343174199239744
Offset: 3
A253678
Number of perfect matchings in the graph C_8 X C_n.
Original entry on oeis.org
1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3
- S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
A281679
Number of perfect matchings in the graph C_10 X C_n.
Original entry on oeis.org
5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function, in Maple notation.
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Perfect Matching
- Eric Weisstein's World of Mathematics, Torus Grid Graph
A309018
Number of perfect matchings in the graph C_{12} X C_n.
Original entry on oeis.org
24200, 7379216, 41934482, 4357599552, 55820091938, 3827188349968, 69206906601800, 3876306765700644, 83804387156528018, 4161957566985310208, 100644292294423977842, 4601436044608986037284, 120511830300023778605000, 5179981855242249681088528, 144148769049390803580105218
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function in Maple notation.
A341738
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).
Original entry on oeis.org
1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
Offset: 1
Square array begins:
1, 2, 7, 16, 41, 98, ...
1, 2, 25, 72, 361, 1250, ...
1, 2, 112, 400, 4961, 25088, ...
1, 2, 529, 2312, 77841, 559682, ...
1, 2, 2527, 13456, 1270016, 12771458, ...
1, 2, 12100, 78408, 20967241, 292820000, ...
-
default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));
A341739
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).
Original entry on oeis.org
1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
8, 36, 200, 1156, 6728, ...
49, 625, 12544, 279841, 6385729, ...
288, 9216, 583200, 44408896, 3546167328, ...
1681, 130321, 24611521, 6059221281, 1612940640256, ...
-
default(realprecision, 120);
T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-7 of 7 results.
Comments