A341741
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 272, 722, 3108, ...
2, 200, 224, 3108, 9922, 90176, ...
2, 1156, 1058, 39952, 155682, 3113860, ...
2, 6728, 5054, 537636, 2540032, 114557000, ...
2, 39204, 24200, 7379216, 41934482, 4357599552, ...
Columns 1..12 give
A007395,
A162484(2*n),
A231087,
A220864(2*n),
A231485,
A232804(2*n),
A230033,
A253678(2*n),
A281583,
A281679(2*n),
A308761,
A309018(2*n).
A341782
a(n) = sqrt( Product_{j=1..n} Product_{k=1..n-1} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin(2*k*Pi/n)^2) ).
Original entry on oeis.org
1, 1, 2, 112, 2312, 1270016, 292820000, 1522266730496, 3772667519238272, 193509323594243571712, 5041011532336819845120512, 2610531939025273190037188509696
Offset: 0
-
Table[Sqrt[Product[Product[(4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[2*k*Pi/n]^2), {j, 1, n}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, n-1, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin(2*k*Pi/n)^2))));
A341739
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).
Original entry on oeis.org
1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
8, 36, 200, 1156, 6728, ...
49, 625, 12544, 279841, 6385729, ...
288, 9216, 583200, 44408896, 3546167328, ...
1681, 130321, 24611521, 6059221281, 1612940640256, ...
-
default(realprecision, 120);
T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-3 of 3 results.
Comments