cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A341782 a(n) = sqrt( Product_{j=1..n} Product_{k=1..n-1} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin(2*k*Pi/n)^2) ).

Original entry on oeis.org

1, 1, 2, 112, 2312, 1270016, 292820000, 1522266730496, 3772667519238272, 193509323594243571712, 5041011532336819845120512, 2610531939025273190037188509696
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2021

Keywords

Crossrefs

Main diagonal of A341738.

Programs

  • Mathematica
    Table[Sqrt[Product[Product[(4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[2*k*Pi/n]^2), {j, 1, n}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, n-1, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin(2*k*Pi/n)^2))));

Formula

If n is odd, a(n) = A341535(n)/2.
If n is odd, a(n) = A341478(n).
a(n) ~ exp(2*G*n^2/Pi) / (2^(3/4) * (1 + (1 + (-1)^n)/sqrt(2))), where G is Catalan's constant A006752. - Vaclav Kotesovec, Mar 18 2023

A341739 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).

Original entry on oeis.org

1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
     1,      1,        1,          1,             1, ...
     8,     36,      200,       1156,          6728, ...
    49,    625,    12544,     279841,       6385729, ...
   288,   9216,   583200,   44408896,    3546167328, ...
  1681, 130321, 24611521, 6059221281, 1612940640256, ...
		

Crossrefs

Main diagonal gives A341478(n)^2.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-3 of 3 results.