cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341535 a(n) = sqrt(Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/n)^2)).

Original entry on oeis.org

1, 2, 36, 224, 38416, 2540032, 4115479104, 3044533460992, 48656376372265216, 387018647188487143424, 62441634466575620320306176, 5221063878050546380074377019392, 8590392749565593082105293619707908096, 7476351474500749779460880888573410601336832
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Main diagonal of A341533.

Programs

  • Mathematica
    Table[Sqrt[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/n]^2, {k, 1, n}, {j, 1, n}]], {n, 0, 20}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/n)^2))));

Formula

a(n) ~ 2^(1/4)*(1 + sqrt(2)*(1 + (-1)^n)/2) * exp(2*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
If n is odd, a(n) = 2*A341478(n). - Seiichi Manyama, Feb 19 2021

A341738 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).

Original entry on oeis.org

1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
  1, 2,     7,    16,       41,        98, ...
  1, 2,    25,    72,      361,      1250, ...
  1, 2,   112,   400,     4961,     25088, ...
  1, 2,   529,  2312,    77841,    559682, ...
  1, 2,  2527, 13456,  1270016,  12771458, ...
  1, 2, 12100, 78408, 20967241, 292820000, ...
		

Crossrefs

Main diagonal gives A341782.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));

Formula

If k is odd, T(n,k) = A341533(n,k)/2.
Showing 1-2 of 2 results.