A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1
Examples
Square array begins: 2, 8, 14, 36, 82, 200, ... 2, 36, 50, 272, 722, 3108, ... 2, 200, 224, 3108, 9922, 90176, ... 2, 1156, 1058, 39952, 155682, 3113860, ... 2, 6728, 5054, 537636, 2540032, 114557000, ... 2, 39204, 24200, 7379216, 41934482, 4357599552, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..50, flattened
- P. W. Kasteleyn, The statistics of dimers on a lattice, I. the number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209-1225. See Eq. (25).
- Index entries for sequences related to dominoes
Crossrefs
Formula
Extensions
New name from Andrey Zabolotskiy, Dec 26 2021
Comments