cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A341478 a(n) = sqrt( Product_{1<=j<=n-1} Product_{1<=k<=n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) ).

Original entry on oeis.org

1, 1, 6, 112, 6664, 1270016, 776239200, 1522266730496, 9580300901941376, 193509323594243571712, 12545297912843041612924416, 2610531939025273190037188509696, 1743627211475190637398673259679582208
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sqrt[Product[4*Sin[j*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(2*n)]^2, {k, 1, n}, {j, 1, n-1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2))));

Formula

a(n) ~ exp(2*G*n^2/Pi) / 2^(3/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

A229728 Decimal expansion of the square of the constant A130834.

Original entry on oeis.org

3, 2, 0, 9, 9, 1, 2, 3, 0, 0, 7, 2, 8, 1, 5, 7, 6, 7, 8, 6, 2, 9, 7, 4, 9, 4, 8, 1, 7, 7, 9, 9, 0, 5, 1, 5, 8, 7, 4, 8, 5, 9, 2, 1, 2, 4, 2, 5, 1, 8, 3, 4, 4, 9, 4, 8, 7, 4, 5, 8, 6, 0, 0, 5, 8, 4, 6, 1, 0, 2, 4, 6, 4, 1, 6, 2, 4, 2, 4, 0, 2, 0, 4, 0, 6, 6, 7, 6, 7, 1, 2, 1, 5, 1, 4, 1, 0, 8, 8, 7, 0, 9, 4, 2, 8, 4, 6, 6, 9, 1, 5, 8, 3, 8, 7, 5, 2, 2, 6, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2013

Keywords

Examples

			3.209912300728157678629749481779905158748592124251834494874586...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 232.

Crossrefs

Programs

Formula

From Amiram Eldar, Jun 12 2023: (Start)
Equals exp(4*G/Pi) = exp(4*A006752/A000796).
Equals A097469^4. (End)

A341479 a(n) = Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2).

Original entry on oeis.org

1, 8, 256, 80000, 268435456, 9503683872768, 3503536769037500416, 13371518717864846127300608, 527073330112110826119518513790976, 214344906329057967318939007805581230080000
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/(2*n)]^2, {k, 1, n}, {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));

Formula

a(n) ~ 2 * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

A341493 a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).

Original entry on oeis.org

1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Comments

Number of perfect matchings in the graph C_n X C_{n+1} for n > 0.

Crossrefs

Programs

  • Mathematica
    Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));

Formula

a(n) ~ 2^(3/4) * exp(G*n*(n+1)/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
Showing 1-5 of 5 results.