A335586
Number of domino tilings of a 2n X 2n toroidal grid.
Original entry on oeis.org
1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
Offset: 0
For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
- Seiichi Manyama, Table of n, a(n) for n = 0..44
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Drake Thomas, 8 tilings for the 2 X 2 toroidal grid.
- Eric Weisstein's World of Mathematics, Perfect Matching
- Eric Weisstein's World of Mathematics, Torus Grid Graph
-
default(realprecision, 120);
b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021
A341479
a(n) = Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2).
Original entry on oeis.org
1, 8, 256, 80000, 268435456, 9503683872768, 3503536769037500416, 13371518717864846127300608, 527073330112110826119518513790976, 214344906329057967318939007805581230080000
Offset: 0
-
Table[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/(2*n)]^2, {k, 1, n}, {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
A341535
a(n) = sqrt(Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/n)^2)).
Original entry on oeis.org
1, 2, 36, 224, 38416, 2540032, 4115479104, 3044533460992, 48656376372265216, 387018647188487143424, 62441634466575620320306176, 5221063878050546380074377019392, 8590392749565593082105293619707908096, 7476351474500749779460880888573410601336832
Offset: 0
-
Table[Sqrt[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/n]^2, {k, 1, n}, {j, 1, n}]], {n, 0, 20}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/n)^2))));
A341782
a(n) = sqrt( Product_{j=1..n} Product_{k=1..n-1} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin(2*k*Pi/n)^2) ).
Original entry on oeis.org
1, 1, 2, 112, 2312, 1270016, 292820000, 1522266730496, 3772667519238272, 193509323594243571712, 5041011532336819845120512, 2610531939025273190037188509696
Offset: 0
-
Table[Sqrt[Product[Product[(4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[2*k*Pi/n]^2), {j, 1, n}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, n-1, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin(2*k*Pi/n)^2))));
A341739
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).
Original entry on oeis.org
1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
8, 36, 200, 1156, 6728, ...
49, 625, 12544, 279841, 6385729, ...
288, 9216, 583200, 44408896, 3546167328, ...
1681, 130321, 24611521, 6059221281, 1612940640256, ...
-
default(realprecision, 120);
T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-5 of 5 results.
Comments