cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A335586 Number of domino tilings of a 2n X 2n toroidal grid.

Original entry on oeis.org

1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
Offset: 0

Views

Author

Drake Thomas, Jan 26 2021

Keywords

Comments

For n > 1, number of perfect matchings of the graph C_2n X C_2n.

Examples

			For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
		

Crossrefs

Number of perfect matchings of the graph C_2m X C_n: A162484 (m=1), A220864 (m=2), A232804 (m=3), A253678 (m=4), A281679 (m=5), A309018 (m=6).

Programs

  • PARI
    default(realprecision, 120);
    b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021

Formula

a(n) = 4 * Product_{j=1..n-1} Product_{k=1..n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) + 1/2 * Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2) = 4 * A341478(n)^2 + A341479(n)/2 for n > 0. - Seiichi Manyama, Feb 13 2021
a(n) ~ (1 + sqrt(2)) * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

Extensions

More terms from Seiichi Manyama, Feb 13 2021

A341479 a(n) = Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2).

Original entry on oeis.org

1, 8, 256, 80000, 268435456, 9503683872768, 3503536769037500416, 13371518717864846127300608, 527073330112110826119518513790976, 214344906329057967318939007805581230080000
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/(2*n)]^2, {k, 1, n}, {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));

Formula

a(n) ~ 2 * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

A341535 a(n) = sqrt(Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/n)^2)).

Original entry on oeis.org

1, 2, 36, 224, 38416, 2540032, 4115479104, 3044533460992, 48656376372265216, 387018647188487143424, 62441634466575620320306176, 5221063878050546380074377019392, 8590392749565593082105293619707908096, 7476351474500749779460880888573410601336832
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Main diagonal of A341533.

Programs

  • Mathematica
    Table[Sqrt[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/n]^2, {k, 1, n}, {j, 1, n}]], {n, 0, 20}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/n)^2))));

Formula

a(n) ~ 2^(1/4)*(1 + sqrt(2)*(1 + (-1)^n)/2) * exp(2*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
If n is odd, a(n) = 2*A341478(n). - Seiichi Manyama, Feb 19 2021

A341782 a(n) = sqrt( Product_{j=1..n} Product_{k=1..n-1} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin(2*k*Pi/n)^2) ).

Original entry on oeis.org

1, 1, 2, 112, 2312, 1270016, 292820000, 1522266730496, 3772667519238272, 193509323594243571712, 5041011532336819845120512, 2610531939025273190037188509696
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2021

Keywords

Crossrefs

Main diagonal of A341738.

Programs

  • Mathematica
    Table[Sqrt[Product[Product[(4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[2*k*Pi/n]^2), {j, 1, n}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, n-1, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin(2*k*Pi/n)^2))));

Formula

If n is odd, a(n) = A341535(n)/2.
If n is odd, a(n) = A341478(n).
a(n) ~ exp(2*G*n^2/Pi) / (2^(3/4) * (1 + (1 + (-1)^n)/sqrt(2))), where G is Catalan's constant A006752. - Vaclav Kotesovec, Mar 18 2023

A341739 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).

Original entry on oeis.org

1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
     1,      1,        1,          1,             1, ...
     8,     36,      200,       1156,          6728, ...
    49,    625,    12544,     279841,       6385729, ...
   288,   9216,   583200,   44408896,    3546167328, ...
  1681, 130321, 24611521, 6059221281, 1612940640256, ...
		

Crossrefs

Main diagonal gives A341478(n)^2.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
Showing 1-5 of 5 results.