cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A130834 Decimal expansion of the limit of the (2/n^2)-th power of the number of distinct dimer coverings on the n X n square grid, n even, as n goes to infinity.

Original entry on oeis.org

1, 7, 9, 1, 6, 2, 2, 8, 1, 2, 0, 6, 9, 5, 9, 3, 4, 2, 4, 7, 3, 0, 5, 4, 7, 0, 8, 9, 3, 4, 2, 9, 8, 2, 4, 3, 2, 2, 6, 8, 1, 3, 4, 3, 9, 3, 1, 3, 2, 9, 5, 4, 7, 6, 7, 7, 6, 7, 5, 8, 3, 4, 7, 6, 4, 9, 9, 4, 2, 5, 0, 7, 4, 2, 3, 7, 6, 5, 7, 8, 9, 6, 0, 1, 3, 2, 2, 6
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2007

Keywords

Examples

			1.791622812069593424730547089...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 232, 407.

Crossrefs

Cf. A000796 (Pi), A006752 (Catalan), A097469, A229728.

Programs

  • Magma
    R:=RealField(100); Exp(2*Catalan(R)/Pi(R)); // G. C. Greubel, Aug 23 2018
  • Maple
    evalf(exp(2*Catalan/Pi));
  • Mathematica
    RealDigits[Exp[(2*Catalan)/Pi],10,120][[1]] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    exp(2*Catalan/Pi) \\ Charles R Greathouse IV, Jul 15 2014
    

Formula

Equals exp(2*A006752/A000796).
Equals A097469^2. - Vaclav Kotesovec, Dec 30 2020
Equals Product_{k>=1} (((4*k-1)^3*(4*k+3))/((4*k+1)^3*(4*k-3)))^k. - Antonio Graciá Llorente, Jul 22 2024
Equals lim_{n->oo} 1/((4*n)^(2*n))*Product_{k=1..n} ((4*k - 1)^(4*k - 1))/((4*k - 3)^(4*k - 3)). - Antonio Graciá Llorente, Apr 16 2025

A218387 Decimal expansion of the spanning tree constant of the square lattice.

Original entry on oeis.org

1, 1, 6, 6, 2, 4, 3, 6, 1, 6, 1, 2, 3, 2, 7, 5, 1, 2, 0, 5, 5, 3, 5, 3, 7, 8, 2, 5, 8, 7, 3, 5, 7, 9, 6, 7, 5, 4, 5, 6, 2, 6, 4, 6, 1, 5, 9, 4, 3, 3, 4, 9, 0, 8, 1, 0, 4, 4, 0, 0, 6, 2, 7, 6, 4, 4, 6, 9, 9, 0, 5, 4, 7, 5, 2, 1, 7, 5, 5, 4, 4, 6, 9, 0, 6, 5, 0, 7, 2, 9, 7, 2, 1, 2, 5, 3, 6, 2, 3, 5, 6, 3, 5, 8, 9, 1, 2, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 27 2012

Keywords

Examples

			1.16624361612327512055353782587357967545626461594...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
  • Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.

Crossrefs

Cf. A006752 (Catalan), A088538 (4/Pi), A229728, A247685.

Programs

  • Magma
    R:= RealField(100); 4*Catalan(R)/Pi(R); // G. C. Greubel, Aug 23 2018
  • Maple
    evalf(Catalan*4/Pi) ;
  • Mathematica
    RealDigits[4*Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    default(realprecision, 100); 4*Catalan/Pi \\ G. C. Greubel, Aug 23 2018
    

Formula

Equals the product of A006752 by A088538.
From Amiram Eldar, Jul 22 2020: (Start)
Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - Stefano Spezia, Nov 07 2024
Equals log(A229728) = A247685/Pi. - Hugo Pfoertner, Nov 07 2024
Equals Integral_{x=0..1} EllipticK(x)/(Pi*sqrt(x)) dx. - Kritsada Moomuang, Jun 21 2025

A242710 Decimal expansion of "beta", a Kneser-Mahler polynomial constant (a constant related to the asymptotic evaluation of the supremum norm of polynomials).

Original entry on oeis.org

1, 3, 8, 1, 3, 5, 6, 4, 4, 4, 5, 1, 8, 4, 9, 7, 7, 9, 3, 3, 7, 1, 4, 6, 6, 9, 5, 6, 8, 5, 0, 6, 2, 4, 1, 2, 6, 2, 8, 9, 6, 3, 7, 2, 6, 2, 2, 3, 9, 0, 7, 0, 5, 6, 0, 1, 9, 8, 7, 6, 4, 8, 4, 5, 3, 0, 0, 5, 5, 4, 9, 6, 3, 6, 3, 6, 6, 3, 6, 2, 4, 5, 4, 0, 8, 6, 3, 9, 7, 6, 7, 9, 5, 4, 4, 2, 8, 1, 1, 6
Offset: 1

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			1.38135644451849779337146695685...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003; see Section 3.10, Kneser-Mahler polynomial constants, p. 232, and Section 5.23, Monomer-dimer constants, p. 408.

Crossrefs

Programs

  • Mathematica
    Exp[(PolyGamma[1, 4/3] - PolyGamma[1, 2/3] + 9)/(4*Sqrt[3]*Pi)] // RealDigits[#, 10, 100]& // First

Formula

beta = exp(G/Pi) = exp((PolyGamma(1, 4/3) - PolyGamma(1, 2/3) + 9)/(4*sqrt(3)*Pi)), where G is Gieseking's constant (cf. A143298) and PolyGamma(1,z) the first derivative of the digamma function psi(z).
Also equals exp(-Im(Li_2( 1/2 - (i*sqrt(3))/2))/Pi), where Li_2 is the dilogarithm function.

A377764 Decimal expansion of (Pi/8)*exp(4*G/Pi), where G is the Catalan constant (A006752).

Original entry on oeis.org

1, 2, 6, 0, 5, 2, 9, 6, 1, 2, 8, 2, 9, 3, 8, 6, 4, 1, 0, 5, 5, 4, 5, 3, 6, 3, 3, 0, 1, 3, 5, 4, 0, 9, 8, 4, 2, 2, 0, 2, 6, 6, 9, 2, 3, 9, 3, 5, 1, 5, 8, 8, 7, 2, 2, 6, 1, 0, 7, 7, 6, 8, 3, 3, 7, 3, 4, 3, 3, 9, 2, 6, 0, 5, 9, 0, 0, 9, 3, 5, 1, 1, 8, 8, 6, 7, 0, 5, 0, 7
Offset: 1

Views

Author

Paolo Xausa, Nov 06 2024

Keywords

Examples

			1.26052961282938641055453633013540984220266923935...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi/8*Exp[4*Catalan/Pi], 10, 100]]

Formula

Equals Product_{k >= 1} (1 - 1/(2*k+1)^2)^((-1)^k*(2*k+1)) (from Ramanujan).
Equals Product_{k >= 1} (1 - 1/A016754(k))^((-1)^k*A005408(k)).
Showing 1-4 of 4 results.