cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A143298 Decimal expansion of Gieseking's constant.

Original entry on oeis.org

1, 0, 1, 4, 9, 4, 1, 6, 0, 6, 4, 0, 9, 6, 5, 3, 6, 2, 5, 0, 2, 1, 2, 0, 2, 5, 5, 4, 2, 7, 4, 5, 2, 0, 2, 8, 5, 9, 4, 1, 6, 8, 9, 3, 0, 7, 5, 3, 0, 2, 9, 9, 7, 9, 2, 0, 1, 7, 4, 8, 9, 1, 0, 6, 7, 7, 6, 5, 9, 7, 4, 7, 6, 2, 5, 8, 2, 4, 4, 0, 2, 2, 1, 3, 6, 4, 7, 0, 3, 5, 4, 2, 2, 8, 2, 5, 6, 6, 9, 4, 9, 4, 5, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Aug 05 2008

Keywords

Comments

The largest possible volume of a tetrahedron in hyperbolic space. Named by Adams (1998) after German mathematician Hugo Gieseking (1887 - 1915). - Amiram Eldar, Aug 14 2020

Examples

			1.0149416064096536250...
		

References

  • J. Borwein and P. Borwein, Experimental and computational mathematics: Selected writings, Perfectly Scientific Press, 2010, p. 106.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 233, 512.

Crossrefs

Programs

  • Maple
    sqrt(3)/6*(Psi(1,1/3)-2*Pi^2/3) ; evalf(%) ; # R. J. Mathar, Sep 23 2013
  • Mathematica
    N[(9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]), 105] // RealDigits // First
  • PARI
    polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
    sqrt(3)/6*(polygamma(1, 1/3) - 2*Pi^2/3)
    (9 - polygamma(1, 2/3) + polygamma(1, 4/3))/(4*sqrt(3)) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, Pi/3) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    sqrt(3)/2 * sumpos(n=1, 1/(6*n-4)^2 + 1/(6*n-5)^2 - 1/(6*n-1)^2 - 1/(6*n-2)^2) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4*sqrt(3)).
Equals Sum_{k>0} sin(k*Pi/3)/k^2; (also equals (sqrt(3)/2)*Sum_{k>=1} -1/(6k-1)^2 - 1/(6k-2)^2 + 1/(6k-4)^2 + 1/(6k-5)^2). - Jean-François Alcover, Jun 19 2016, from the book by J. & P. Borwein.
From Amiram Eldar, Aug 14 2020: (Start)
Equals Integral_{x=0..2*Pi/3} log(2*cos(x/2)).
Equals (3*sqrt(3)/4) * (1 - Sum_{k>=0} 1/(3*k + 2)^2 + Sum_{k>=1} 1/(3*k + 1)^2) = (3*sqrt(3)/4) * Sum_{k>=1} A049347(k-1)/k^2.
Equals Pi * A244996 = Pi * log(A242710). (End)
Equals A091518/2 = A244345/5. - Hugo Pfoertner, Sep 16 2024

A244996 Decimal expansion of the moment derivative W_3'(0) associated with the radial probability distribution of a 3-step uniform random walk.

Original entry on oeis.org

3, 2, 3, 0, 6, 5, 9, 4, 7, 2, 1, 9, 4, 5, 0, 5, 1, 4, 0, 9, 3, 6, 3, 6, 5, 1, 0, 7, 2, 3, 8, 0, 6, 3, 9, 4, 0, 7, 2, 2, 4, 1, 8, 4, 0, 7, 8, 0, 5, 8, 7, 0, 1, 6, 1, 3, 0, 8, 6, 8, 4, 7, 0, 3, 6, 1, 0, 1, 5, 1, 1, 2, 8, 0, 7, 2, 6, 9, 8, 4, 2, 0, 8, 3, 7, 8, 7, 6, 0, 9, 0, 8, 9, 3, 7, 1, 3, 9, 2, 0, 7, 3, 4, 8, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Comments

This constant is also associated with the asymptotic number of lozenge tilings; see the references by Santos (2004, 2005). It is called the "maximum asymptotic normalized entropy of lozenge tilings of a planar region". Santos (2004, 2005) mentions that is computed in Cohn et al. (2000). For discussion of lozenge tilings, see for example the references for sequences A122722 and A273464. - Petros Hadjicostas, Sep 13 2019

Examples

			0.3230659472194505140936365107238063940722418407805870161308684703610151128...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003; see Section 3.10, Kneser-Mahler Polynomial Constants, p. 232.

Crossrefs

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; RealDigits[(1/Pi)*Clausen2[Pi/3], 10, 105] // First
  • PARI
    imag(polylog(2,exp(Pi*I/3)))/Pi \\ Charles R Greathouse IV, Aug 27 2014

Formula

W_3'(0) = (1/Pi)*Cl2[Pi/3] = (3/(2*Pi))*Cl2[2*Pi/3], where Cl2 is the Clausen function.
W_3'(0) = integral_{y=1/6..5/6} log(2*sin(Pi*y)).
Also equals log(A242710).

A122722 Number of triangulations of Delta^2 x Delta^(k-1).

Original entry on oeis.org

1, 6, 108, 4488, 376200, 58652640, 16119956160, 7519632382080, 5788821019685760, 7197150396467808000, 14206044114169232371200, 43903287397136367836697600, 210012592354755890839147008000, 1540026232221309103088828327116800, 17170286302440610680613970557956096000, 289015112280462271460535463614055526400000
Offset: 1

Views

Author

Jonathan Vos Post, Oct 22 2006

Keywords

Comments

The number of triangulations of Delta^2 x Delta^(k) is between alpha^(k^2) and beta*(k^2) where alpha = (27/16)^(1/4) ~ 1.13975 and beta = 6^(1/6) ~ 1.34800 [p. 10 of Santos's handwritten notes about "The Cayley trick"].
There are arithmetic errors in Santos's lecture notes "The Cayley trick". The same table gives lozenge tilings of k*Delta^2.
From Petros Hadjicostas, Sep 13 2019: (Start)
The first column (indexed by k) of the table on p. 9 in Santos' handwritten notes "The Cayley trick" is actually the sequence (A273464(k, k*(k-1)/2 + 1): k >= 1).
In later published papers, Santos (2004, 2005) mentions that the number of triangulations of Delta^2 x Delta^k grows as exp(A244996*k^2/2 + o(k^2)) as k -> infinity. Notice that exp(A244996 * k^2/2) = A242710^(k^2/2). [See Theorem 1 and Theorem 4.9. Probably Theorem 1, part (2), in Santos (2004) has a typo.]
Note that alpha = (27/16)^(1/4) ~ 1.13975 < A242710^(k^2/2) ~ 1.175311 < beta = 6^(1/6) ~ 1.34800 (where alpha and beta are given on the first paragraph of these comments).
The reason the name of the sequence has "Delta^2 x Delta^(k-1)" rather than "Delta^2 x Delta^k" is because (according to Santos) the number of triangulations of Delta^2 x Delta^(k-1) equals k! times the number of lozenge tilings of k*Delta^2. (End)

Examples

			a(1) = 1 * 1! = 1.
a(2) = 3 * 2! = 6.
a(3) = 18 * 3! = 108.
a(4) = "187 * 4! = 2244" [sic]; actually 187 * 4! = 4488.
a(5) = "3135 * 5! = 188100" [sic]; actually 3135 * 5! = 376200.
		

Crossrefs

Formula

Conjectures: a(n) = n! * A273464(n, n*(n+1)/2) for n >= 1; a(n) = A011555(n-1) for n >= 2. [A273464(n,k) is defined for n >= 1 and 0 <= k <= n*(n+1)/2.] - Petros Hadjicostas, Sep 12 2019

Extensions

More terms (using the references) from Petros Hadjicostas, Sep 12 2019

A244345 Decimal expansion of xi_3 = 5*G, the volume of an ideal hyperbolic cube, where G is Gieseking's constant.

Original entry on oeis.org

5, 0, 7, 4, 7, 0, 8, 0, 3, 2, 0, 4, 8, 2, 6, 8, 1, 2, 5, 1, 0, 6, 0, 1, 2, 7, 7, 1, 3, 7, 2, 6, 0, 1, 4, 2, 9, 7, 0, 8, 4, 4, 6, 5, 3, 7, 6, 5, 1, 4, 9, 8, 9, 6, 0, 0, 8, 7, 4, 4, 5, 5, 3, 3, 8, 8, 2, 9, 8, 7, 3, 8, 1, 2, 9, 1, 2, 2, 0, 1, 1, 0, 6, 8, 2, 3, 5, 1, 7, 7, 1, 1, 4, 1, 2, 8, 3, 4, 7, 4, 7, 2, 9, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 26 2014

Keywords

Examples

			5.0747080320482681251060127713726...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 8.9 Hyperbolic Volume Constants p. 512.

Crossrefs

Programs

  • Mathematica
    G = (9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]); RealDigits[5*G, 10, 104] // First

Formula

5*(9 - Polygamma(1, 2/3) + Polygamma(1, 4/3)) / (4*sqrt(3)).

A247548 Decimal expansion of D^2, a constant associated with the "Dimer Problem" on a triangular lattice.

Original entry on oeis.org

2, 3, 5, 6, 5, 2, 7, 3, 5, 3, 3, 4, 6, 2, 4, 8, 8, 0, 9, 2, 2, 9, 1, 4, 3, 1, 4, 7, 6, 3, 9, 9, 9, 4, 7, 6, 7, 9, 6, 4, 3, 9, 1, 5, 0, 0, 6, 7, 8, 4, 1, 6, 7, 9, 8, 3, 8, 6, 6, 1, 8, 7, 6, 0, 6, 3, 4, 1, 9, 1, 2, 6, 2, 3, 1, 0, 0, 2, 5, 4, 1, 5, 5, 6, 5, 3, 6, 9, 1, 7, 7, 1, 3, 6, 7, 0, 9, 1, 5, 9, 6, 3, 9, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 19 2014

Keywords

Examples

			2.35652735334624880922914314763999476796439150067841679838661876063419126231...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.23 Monomer-dimer constants p. 408.

Crossrefs

Programs

  • Mathematica
    digits = 20; uv = Log[6 + 2*Cos[u] + 2*Cos[v] + 2*Cos[u + v]];
    SetOptions[NIntegrate, WorkingPrecision -> digits + 5];
    i1 = 2*NIntegrate[uv, {u, 0, Pi/2}, {v, 0, Pi/2}];
    i2 = 4*NIntegrate[uv, {u, 0, Pi/2}, {v, Pi/2, Pi}];
    i3 = 2*NIntegrate[uv, {u, -Pi, -Pi/2}, {v, Pi/2, Pi}];
    i4 = 2*NIntegrate[uv, {u, -Pi/2, 0}, {v, 0, Pi/2}];
    i5 = 4*NIntegrate[uv, {u, -Pi/2, 0}, {v, Pi/2, Pi}];
    i6 = 2*NIntegrate[uv, {u, Pi/2, Pi}, {v, Pi/2, Pi}];
    D2 = Exp[(1/(8*Pi^2))*(i1 + i2 + i3 + i4 + i5 + i6)];
    RealDigits[D2, 10, digits] // First
  • PARI
    exp(1/(8*Pi^2) * intnum(u=-Pi, Pi, intnum(v=-Pi,Pi, log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v))))) \\ Michel Marcus, Sep 19 2014

Formula

Equals exp( 1/(8*Pi^2) * Integral_{v=-Pi..Pi} Integral_{u=-Pi..Pi} log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v)) du dv).

Extensions

More terms from Michel Marcus, Sep 19 2014
Showing 1-5 of 5 results.