A245736 Decimal expansion of z_br = z_4.8.8, the bulk limit of the number of spanning trees on a "bathroom" lattice (squares and octagons).
7, 8, 6, 6, 8, 4, 2, 7, 5, 3, 7, 8, 8, 3, 2, 1, 7, 9, 1, 2, 1, 6, 5, 7, 9, 8, 9, 4, 9, 4, 6, 9, 5, 3, 8, 0, 5, 5, 1, 1, 7, 0, 8, 1, 6, 5, 7, 8, 0, 3, 2, 7, 4, 9, 7, 1, 8, 6, 4, 6, 4, 5, 1, 8, 9, 8, 8, 1, 7, 9, 9, 2, 8, 8, 1, 8, 3, 9, 9, 3, 7, 2, 4, 3, 9, 6, 8, 6, 6, 7, 2, 6, 1, 5, 2, 3, 4, 7, 8, 0, 9, 5, 8
Offset: 0
Examples
0.786684275378832179121657989494695380551170816578...
Links
- Shu-Chiuan Chang and Robert Shrock, Some Exact Results for Spanning Trees on Lattices., Discrete Math., J. Phys. A: Math. Gen. 39, 5653-5658 (2006).
Programs
-
Mathematica
z[br] = Catalan/Pi + (1/4)*Log[3-2*Sqrt[2]] + (1/Pi)*Integrate[ArcTan[t]/t, {t, 0, 3+2*Sqrt[2]}]; RealDigits[N[Re[z[br]], 103]] // First
Formula
C/Pi + (1/4)*log(3-2*sqrt(2)) + (1/Pi)*integral_{0..3+2*sqrt(2)} arctan(t)/t dt, where C is Catalan's constant.
Comments