cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A245736 Decimal expansion of z_br = z_4.8.8, the bulk limit of the number of spanning trees on a "bathroom" lattice (squares and octagons).

Original entry on oeis.org

7, 8, 6, 6, 8, 4, 2, 7, 5, 3, 7, 8, 8, 3, 2, 1, 7, 9, 1, 2, 1, 6, 5, 7, 9, 8, 9, 4, 9, 4, 6, 9, 5, 3, 8, 0, 5, 5, 1, 1, 7, 0, 8, 1, 6, 5, 7, 8, 0, 3, 2, 7, 4, 9, 7, 1, 8, 6, 4, 6, 4, 5, 1, 8, 9, 8, 8, 1, 7, 9, 9, 2, 8, 8, 1, 8, 3, 9, 9, 3, 7, 2, 4, 3, 9, 6, 8, 6, 6, 7, 2, 6, 1, 5, 2, 3, 4, 7, 8, 0, 9, 5, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			0.786684275378832179121657989494695380551170816578...
		

Crossrefs

Cf. A218387(z_sq), A245725(z_tri).

Programs

  • Mathematica
    z[br] = Catalan/Pi + (1/4)*Log[3-2*Sqrt[2]] + (1/Pi)*Integrate[ArcTan[t]/t, {t, 0, 3+2*Sqrt[2]}]; RealDigits[N[Re[z[br]], 103]] // First

Formula

C/Pi + (1/4)*log(3-2*sqrt(2)) + (1/Pi)*integral_{0..3+2*sqrt(2)} arctan(t)/t dt, where C is Catalan's constant.

A245737 Decimal expansion of z_hc, the bulk limit of the number of spanning trees on a honeycomb lattice.

Original entry on oeis.org

8, 0, 7, 6, 6, 4, 8, 6, 8, 0, 4, 8, 6, 2, 6, 2, 8, 5, 2, 3, 4, 0, 9, 1, 2, 7, 6, 8, 0, 9, 5, 1, 5, 9, 8, 5, 1, 8, 0, 6, 0, 4, 6, 0, 1, 9, 5, 1, 4, 6, 7, 5, 4, 0, 3, 2, 7, 1, 7, 1, 1, 7, 5, 9, 0, 2, 5, 3, 7, 7, 8, 2, 0, 1, 8, 1, 7, 4, 6, 0, 5, 2, 0, 9, 4, 6, 9, 0, 2, 2, 7, 2, 3, 4, 2, 8, 4, 8, 0, 1, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			0.8076648680486262852340912768095159851806046019514675403271711759...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/2)*(Log[2] + Log[3] + H), 10, 103] // First

Formula

(1/2)*(log(2) + log(3) + H), where H is the auxiliary constant A242967.

A242743 Decimal expansion of an Ising constant related to the random coloring problem.

Original entry on oeis.org

9, 2, 9, 6, 9, 5, 3, 9, 8, 3, 4, 1, 6, 1, 0, 2, 1, 4, 9, 8, 5, 3, 8, 4, 9, 7, 3, 6, 6, 5, 8, 7, 8, 1, 2, 1, 7, 6, 5, 8, 8, 2, 3, 7, 5, 1, 5, 1, 8, 0, 2, 1, 6, 7, 5, 8, 2, 3, 4, 3, 1, 4, 2, 9, 7, 0, 1, 9, 2, 0, 8, 4, 7, 4, 5, 7, 2, 5, 0, 8, 1, 2, 5, 6, 1, 8, 5, 3, 1, 2, 1, 0, 4, 4, 7, 7, 4, 6, 1, 5, 8, 8, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

In Ising model on the 2D square lattice, the negated ratio of free energy per node to the temperature at the critical point. - Andrey Zabolotskiy, Sep 12 2017

Examples

			0.929695398341610214985384973665878...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising constants, p. 399.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Log(2)/2 + 2*Catalan(R)/Pi(R); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Log[2]/2 + 2*Catalan/Pi, 10, 105] // First
  • PARI
    default(realprecision, 100); log(2)/2 + 2*Catalan/Pi \\ G. C. Greubel, Aug 25 2018
    

Formula

log(2)/2 + 2*G/Pi = log(2)/2 + A218387/2, where G is Catalan's constant.

A245739 Decimal expansion of z_kag, the bulk limit of the number of spanning trees on a kagomé lattice.

Original entry on oeis.org

1, 1, 3, 5, 6, 9, 6, 4, 0, 1, 7, 7, 5, 1, 0, 2, 5, 2, 3, 7, 6, 0, 2, 1, 9, 9, 7, 0, 6, 6, 6, 5, 7, 8, 0, 8, 1, 0, 2, 8, 0, 6, 6, 6, 3, 2, 0, 2, 8, 6, 4, 6, 5, 9, 5, 5, 0, 3, 2, 3, 8, 8, 9, 8, 3, 1, 1, 9, 8, 7, 8, 2, 6, 4, 0, 8, 2, 1, 7, 6, 3, 0, 9, 6, 6, 1, 3, 9, 0, 4, 2, 4, 1, 9, 0, 0, 2, 5, 7, 8, 8, 9, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			1.1356964017751025237602199706665780810280666320286465955...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/3)*(2*Log[2] + 2*Log[3] + H), 10, 103] // First

Formula

(1/3)*(2*log(2) + 2*log(3) + H), where H is the auxiliary constant A242967.
Equals (1/3)*(A245725 + log(6)).

A377753 Decimal expansion of 8*G/Pi^2, where G is the Catalan's constant (A006752).

Original entry on oeis.org

7, 4, 2, 4, 5, 3, 7, 4, 5, 4, 2, 1, 5, 4, 4, 3, 2, 5, 9, 0, 7, 9, 2, 7, 9, 6, 0, 7, 9, 8, 8, 7, 9, 9, 4, 2, 4, 3, 7, 7, 2, 1, 8, 3, 6, 5, 2, 5, 1, 7, 2, 8, 2, 1, 6, 3, 0, 4, 0, 7, 6, 7, 7, 5, 6, 4, 5, 0, 4, 4, 8, 5, 1, 5, 0, 3, 1, 1, 0, 0, 7, 1, 6, 6, 9, 1, 0, 8, 5, 1, 0, 1, 8, 4, 9, 4, 5, 4, 3, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 07 2024

Keywords

Examples

			0.7424537454215443259079279607988799424377218365...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 7.7, pp. 54, 474.

Crossrefs

Cf. A002388, A006752, A218387, A242822 (see the second formula).

Programs

Formula

Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} 1/(2*n - 1)^2) (see Finch).
Equals 1/A242822. - Hugo Pfoertner, Nov 07 2024
Equals (1 - W)/(1 + W), where W = tanh(Sum_{prime p == 3 (mod 4)} arctanh(1/p^2)) = zeta(2,3/4)/zeta(2,1/4) = (Pi^2 - 8*G)/(Pi^2 + 8*G) = 0.1478066521164... Physical interpretation: the constant W is the relativistic sum of the velocities c/p^2 over all primes p == 3 (mod 4), in units where the speed of light c = 1. - Thomas Ordowski, Nov 23 2024

A245724 Decimal expansion of 'g', a constant related to the asymptotic distribution of the Q moment and the logarithmic divergence of the Ising specific heat.

Original entry on oeis.org

6, 1, 9, 4, 0, 3, 6, 9, 8, 4, 5, 8, 6, 3, 1, 8, 8, 5, 7, 1, 8, 5, 1, 4, 2, 0, 8, 1, 0, 4, 1, 6, 4, 6, 0, 9, 7, 1, 2, 3, 5, 8, 4, 9, 5, 5, 0, 9, 1, 4, 6, 5, 3, 5, 0, 6, 6, 8, 3, 8, 3, 9, 7, 7, 7, 6, 0, 5, 4, 1, 6, 4, 7, 2, 8, 3, 6, 8, 0, 7, 7, 0, 7, 0, 5, 9, 6, 6, 7, 9, 1, 2, 9, 5, 4, 3, 7, 0, 8, 7, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jul 30 2014

Keywords

Examples

			0.619403698458631885718514208104164609712358495509146535066838397776...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising Constants, p. 399.

Crossrefs

Programs

  • Mathematica
    g = 1 + Pi/4 + Log[(Sqrt[2]/4)*Log[1 + Sqrt[2]]]; RealDigits[g, 10, 102] // First

Formula

g = 1 + Pi/4 + log((sqrt(2)/4)*log(1 + sqrt(2))).

A245740 Decimal expansion of z_(3-12-12), the bulk limit of the number of spanning trees on a 3-12-12 lattice.

Original entry on oeis.org

7, 2, 0, 5, 6, 3, 3, 2, 2, 8, 6, 6, 5, 7, 7, 1, 0, 6, 0, 7, 7, 3, 6, 4, 5, 2, 0, 6, 2, 7, 9, 5, 7, 5, 5, 2, 4, 2, 2, 3, 8, 3, 5, 1, 9, 3, 3, 2, 3, 6, 7, 0, 4, 2, 3, 8, 3, 6, 1, 4, 0, 9, 6, 1, 5, 2, 7, 9, 1, 4, 7, 4, 1, 6, 0, 4, 3, 5, 9, 9, 0, 3, 2, 0, 4, 4, 7, 9, 4, 6, 3, 9, 2, 2, 9, 4, 7, 7, 6, 6, 5, 9, 2
Offset: 0

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			0.720563322866577106077364520627957552422383519332367042383614...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc), A245739(z_kag).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/6)*(Log[2] + 2*Log[3] + Log[5] + H), 10, 103] // First

Formula

(1/6)*(log(2) + 2*log(3) + log(5) + H), where H is the auxiliary constant A242967.
Equals (1/6)*(A245725 + log(15)).

A245741 Decimal expansion of z_UJ, the bulk limit of the number of spanning trees on a Union Jack lattice.

Original entry on oeis.org

1, 5, 7, 3, 3, 6, 8, 5, 5, 0, 7, 5, 7, 6, 6, 4, 3, 5, 8, 2, 4, 3, 3, 1, 5, 9, 7, 8, 9, 8, 9, 3, 9, 0, 7, 6, 1, 1, 0, 2, 3, 4, 1, 6, 3, 3, 1, 5, 6, 0, 6, 5, 4, 9, 9, 4, 3, 7, 2, 9, 2, 9, 0, 3, 7, 9, 7, 6, 3, 5, 9, 8, 5, 7, 6, 3, 6, 7, 9, 8, 7, 4, 4, 8, 7, 9, 3, 7, 3, 3, 4, 5, 2, 3, 0, 4, 6, 9, 5, 6, 1, 9, 1, 6
Offset: 1

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			1.5733685507576643582433159789893907611023416331560654994372929...
		

Crossrefs

Cf. A218387(z_sq), A245725(z_tri), A245736(z_br), A245737(z_hc), A245739(z_kag), A245740(z_(3-12-12)).

Programs

  • Mathematica
    z[UJ] = 2*Catalan/Pi + (1/2)*Log[3 - 2*Sqrt[2]] + (2/Pi)*Integrate[ArcTan[t]/t, {t, 0, 3 + 2*Sqrt[2]}]; RealDigits[N[Re[z[UJ]], 104]] // First

Formula

2*C/Pi + (1/2)*log(3-2*sqrt(2)) + (2/Pi)*integral_{0..3+2*sqrt(2)} arctan(t)/t dt, where C is Catalan's constant.
Equals 2*A245736.

A370374 Decimal expansion of 2*log(2) - 4*Catalan/Pi.

Original entry on oeis.org

2, 2, 0, 0, 5, 0, 7, 4, 4, 9, 9, 6, 6, 1, 5, 4, 9, 8, 2, 8, 0, 9, 2, 6, 4, 1, 7, 0, 4, 2, 7, 7, 3, 4, 6, 0, 6, 9, 4, 7, 3, 5, 6, 5, 2, 7, 7, 7, 1, 6, 1, 4, 2, 7, 1, 9, 7, 3, 5, 3, 7, 4, 2, 5, 3, 9, 7, 9, 6, 6, 9, 6, 4, 1, 7, 6, 3, 3, 9, 8, 4, 3, 0, 5, 2, 1, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			0.22005074499...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Maple
    2*log(2)-4*Catalan/Pi ; evalf(%) ;
  • Mathematica
    RealDigits[2*Log[2] - 4*Catalan/Pi, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    2*log(2) - 4*Catalan/Pi \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=1} ((2n-1)!!/(2n)!!)^2 / (2*n).
Equals A016627 - A218387.
Equals Sum_{k>=1} binomial(2*k,k)^2/(k*2^(4*k+1)) (see Finch). - Stefano Spezia, Nov 13 2024
Showing 1-9 of 9 results.