A245739 Decimal expansion of z_kag, the bulk limit of the number of spanning trees on a kagomé lattice.
1, 1, 3, 5, 6, 9, 6, 4, 0, 1, 7, 7, 5, 1, 0, 2, 5, 2, 3, 7, 6, 0, 2, 1, 9, 9, 7, 0, 6, 6, 6, 5, 7, 8, 0, 8, 1, 0, 2, 8, 0, 6, 6, 6, 3, 2, 0, 2, 8, 6, 4, 6, 5, 9, 5, 5, 0, 3, 2, 3, 8, 8, 9, 8, 3, 1, 1, 9, 8, 7, 8, 2, 6, 4, 0, 8, 2, 1, 7, 6, 3, 0, 9, 6, 6, 1, 3, 9, 0, 4, 2, 4, 1, 9, 0, 0, 2, 5, 7, 8, 8, 9, 9
Offset: 1
Examples
1.1356964017751025237602199706665780810280666320286465955...
Links
- Robert Shrock and F. Y. Wu, Spanning Trees on Graphs and Lattices in d Dimensions pp. 21-25.
- Wikipedia, Trihexagonal tiling [Kagomé lattice]
Programs
-
Mathematica
H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/3)*(2*Log[2] + 2*Log[3] + H), 10, 103] // First