cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A263201 Number of perfect matchings on a Möbius strip of width 4 and length n.

Original entry on oeis.org

11, 37, 71, 252, 539, 1813, 4271, 13519, 34276, 103803, 276119, 813417, 2226851, 6455052, 17965151, 51604017, 144948419, 414258603, 1169523076, 3333192319, 9436433171, 26853404413, 76139155439, 216490730652, 614339685971, 1745997031837, 4956888901511
Offset: 2

Views

Author

Sergey Perepechko, Oct 12 2015

Keywords

Comments

This sequence obeys the same recurrence relation as A252054.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(11 + 26 x - 109 x^2 - 223 x^3 + 294 x^4 + 620 x^5 - 306 x^6 - 764 x^7 + 100 x^8 + 414 x^9 + 5 x^10 - 92 x^11 - 3 x^12 + 7 x^13)/((1 - x) (1 + x) (1 + x - 3 x^2 - x^3 + x^4) (1 - x - 3 x^2 + x^3 + x^4) (1 - x - 5 x^2 - x^3 + x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec(z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)) + O(z^50)) \\ Altug Alkan, Oct 12 2015

Formula

G.f.: z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)).
Showing 1-1 of 1 results.