Oluwatobi Jemima Alabi has authored 3 sequences.
A334396
Number of fault-free tilings of a 3 X n rectangle with squares and dominoes.
Original entry on oeis.org
0, 0, 2, 2, 10, 16, 52, 104, 286, 634, 1622, 3768, 9336, 22152, 54106, 129610, 314546, 756728, 1831196, 4413952, 10667462, 25735346, 62160046, 150020016, 362257392, 874442064, 2111291570, 5096782418, 12305249242, 29706645280, 71719568260
Offset: 1
a(4) = 2 because these are the only fault-free tilings of the 3 X 4 rectangle with squares and dominoes:
._ _ _ _ _ _ _ _
|_ _|_| | | |_|_ _|
| |_ _|_| |_|_ _| |
|_|_|_ _| |_ _|_|_|
-
[n le 4 select 2*Floor((n-1)/2) else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
-
a[n_]:= (2/3)*(Fibonacci[n-1, 2] - (-1)^n*Fibonacci[n-1]);
Table[a[n], {n, 40}] (* G. C. Greubel, Jan 15 2022 *)
-
concat([0,0] , Vec(2*x^3/((1+x-x^2)*(1-2*x-x^2)) + O(x^30))) \\ Colin Barker, Aug 06 2020
-
[(2/3)*(lucas_number1(n-1,2,-1) - (-1)^n*lucas_number1(n-1,1,-1)) for n in (1..40)] # G. C. Greubel, Jan 15 2022
A335747
Number of ways to tile vertically-fault-free 3 X n strip with squares and dominoes.
Original entry on oeis.org
1, 3, 13, 26, 66, 154, 380, 904, 2204, 5286, 12818, 30854, 74636, 179948, 434820, 1049122, 2533818, 6115538, 14766868, 35646080, 86064196, 207766110, 501609946, 1210964110, 2923573588, 7058053972, 17039774268
Offset: 0
a(2) = 13 thanks to these thirteen vertically-fault-free tilings of a 3 X 2 strip:
._ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _| |_|_| |_|_| |_ _| |_|_| |_ _| |_ _|
|_|_| |_ _| |_|_| |_ _| |_ _| |_|_| |_ _|
|_|_| |_|_| |_ _| |_|_| |_ _| |_ _| |_ _|
._ _ _ _ _ _ _ _ _ _ _ _
|_ _| |_ _| |_ _| | |_| |_| | | | |
| |_| |_| | | | | |_|_| |_|_| |_|_|
|_|_| |_|_| |_|_| |_ _| |_ _| |_ _|
-
I:=[26, 66, 154, 380]; [1,3,13] cat [n le 4 select I[n] else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
-
CoefficientList[Series[(1+2x+6x^2+2x^3-8x^4+x^6)/((1+x-x^2)(1-2x-x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 03 2020 *)
LinearRecurrence[{1,4,-1,-1}, {1,3,13,26,66,154,380}, 40] (* G. C. Greubel, Jan 15 2022 *)
-
def P(n): return lucas_number1(n,2,-1)
def A335747(n): return (1/3)*(-9*bool(n==0) - 3*bool(n==1) + 3*bool(n==2) + 2*(3*P(n+1) + 2*P(n-1)) + 2*(-1)^n*fibonacci(n-1))
[A335747(n) for n in (0..40)] # G. C. Greubel, Jan 15 2022
A335560
Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.
Original entry on oeis.org
1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
Offset: 1
Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips:
_ _ _
|_ _| |
| |_|_|
|_|_ _|
Cf.
A063443 and
A211348 (tiling an n X n square with smaller squares).
Cf.
A028420 (tiling an n X n square with monomers and dimers).
-
Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
-
Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020
Comments