cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334396 Number of fault-free tilings of a 3 X n rectangle with squares and dominoes.

Original entry on oeis.org

0, 0, 2, 2, 10, 16, 52, 104, 286, 634, 1622, 3768, 9336, 22152, 54106, 129610, 314546, 756728, 1831196, 4413952, 10667462, 25735346, 62160046, 150020016, 362257392, 874442064, 2111291570, 5096782418, 12305249242, 29706645280, 71719568260
Offset: 1

Views

Author

Keywords

Comments

A fault-free tiling has no horizontal or vertical faults (that is to say, the tiling does not split along any interior horizontal or vertical line).

Examples

			a(4) = 2 because these are the only fault-free tilings of the 3 X 4 rectangle with squares and dominoes:
._ _ _ _     _ _ _ _
|_ _|_| |   | |_|_ _|
| |_ _|_|   |_|_ _| |
|_|_|_ _|   |_ _|_|_|
		

Crossrefs

Programs

  • Magma
    [n le 4 select 2*Floor((n-1)/2) else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
    
  • Mathematica
    a[n_]:= (2/3)*(Fibonacci[n-1, 2] - (-1)^n*Fibonacci[n-1]);
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 15 2022 *)
  • PARI
    concat([0,0] , Vec(2*x^3/((1+x-x^2)*(1-2*x-x^2)) + O(x^30))) \\ Colin Barker, Aug 06 2020
    
  • Sage
    [(2/3)*(lucas_number1(n-1,2,-1) - (-1)^n*lucas_number1(n-1,1,-1)) for n in (1..40)] # G. C. Greubel, Jan 15 2022

Formula

a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 5.
a(n) = 2*A112577(n-2) for n >= 2.
G.f.: 2*x^3 / ((1 + x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Aug 06 2020
Showing 1-1 of 1 results.