cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A033516 Number of matchings in graph C_{4} X P_{n}.

Original entry on oeis.org

1, 7, 108, 1511, 21497, 305184, 4334009, 61545775, 873996300, 12411393231, 176250978417, 2502894414208, 35542954271729, 504736272807255, 7167628868280044, 101785638086283959, 1445431440583263081, 20526196904667164704, 291487197206091205801
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 4 of A287428.

Programs

  • GAP
    a:=[1,7,108,1511,21497,305184];; for n in [4..30] do a[n]:=14*a[n-1]+6*a[n-2]-46*a[n-3]+18*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5+x^6) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    seq(coeff(series((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4 -2*x^5+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    LinearRecurrence[{14,6,-46,18,2,-1}, {1,7,108,1511,21497,305184}, 30] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2 +46*x^3-18*x^4-2*x^5+x^6)) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033516_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5 +x^6) ).list()
    A033516_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

G.f.: -(x^4 -3*x^3 -4*x^2 +7*x -1) / (x^6 -2*x^5 -18*x^4 +46*x^3 -6*x^2 -14*x +1). - Alois P. Heinz, Dec 09 2013

A102080 Number of matchings in the C_n X P_2 (n-prism) graph.

Original entry on oeis.org

2, 12, 32, 108, 342, 1104, 3544, 11396, 36626, 117732, 378424, 1216380, 3909830, 12567448, 40395792, 129844996, 417363330, 1341539196, 4312135920, 13860583628, 44552347606, 143205490528, 460308235560, 1479577849604, 4755836293842, 15286778495572
Offset: 1

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices.
a(n) = sum of row n in A102079.
Prism graphs are defined for n>=3; extended to n=1 using closed form.
Also the Hosoya index of the n-prism graph Y_n. - Eric W. Weisstein, Jul 11 2011

Examples

			a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings:
(i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
		

Crossrefs

Column 2 of A287428.

Programs

  • GAP
    a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
  • Mathematica
    Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}]
    LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • Sage
    def A102080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list()
    a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)). - Corrected by Colin Barker, Jan 28 2017
a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for n>4.
a(n) = A033505(n) - 7*A033505(n-2) - (-1)^n. - Ralf Stephan, May 17 2007

A102090 Number of matchings in the C_n X P_3 graph (C_n is the cycle graph on n vertices and P_3 is the path graph on 3 vertices).

Original entry on oeis.org

47, 228, 1511, 9213, 57536, 356863, 2217871, 13775700, 85579087, 531616825, 3302453192, 20515048427, 127440964999, 791672146068, 4917923140383, 30550483740725, 189781751728736, 1178937572877255, 7323643025265351
Offset: 2

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

Row sums of A102089.

Crossrefs

Column 3 of A287428.
Cf. A102089.

Programs

  • GAP
    a:=[47,228,1511,9213,57536, 356863,2217871,13775700];; for n in [9..30] do a[n]:=3*a[n-1]+19*a[n-2]+10*a[n-3]-24*a[n-4]-10*a[n-5] + 11*a[n-6]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5-5*x^6-3*x^7)/((1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    a[2]:=47: a[3]:=228: a[4]:=1511: a[5]:=9213: a[6]:=57536: a[7]:=356863: a[8]:=2217871: a[9]:=13775700: for n from 10 to 23 do a[n]:=3*a[n-1] +19*a[n-2]+10*a[n-3]-24*a[n-4]-10*a[n-5]+11*a[n-6]+a[n-7]-a[n-8] od: seq(a[n],n=2..23);
  • Mathematica
    LinearRecurrence[{3,19,10,-24,-10,11,1,-1}, {47,228,1511,9213,57536, 356863,2217871,13775700}, 30] (* Harvey P. Dale, Oct 24 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5 -5*x^6-3*x^7)/((1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5))) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A102090_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5-5*x^6-3*x^7)/( (1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5))).list()
    A102090_list(30) # G. C. Greubel, Oct 27 2019
    

Formula

a(n) = 3*a(n-1) + 19*a(n-2) + 10*a(n-3) - 24*a(n-4) - 10*a(n-5) + 11*a(n-6) + a(n-7) - a(n-8) with a(2)=47, a(3)=228, a(4)=1511, a(5)=9213, a(6)=57536, a(7)=356863, a(8)=2217871 and a(9)=13775700.
G.f.: x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5-5*x^6-3*x^7)/((1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5)).

A033515 Number of matchings in graph C_{3} X P_{n}.

Original entry on oeis.org

1, 4, 32, 228, 1655, 11978, 86731, 627960, 4546684, 32919766, 238352021, 1725762060, 12495193865, 90470101964, 655039004548, 4742739182904, 34339290944491, 248629928211118, 1800178148762579, 13033995507292632, 94371237091674512, 683284752187469642
Offset: 0

Views

Author

Keywords

Crossrefs

Row 3 of A287428.

Programs

  • GAP
    a:=[1,4,32,228];; for n in [5..30] do a[n]:=6*a[n-1]+9*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x-x^2)/(1-6*x-9*x^2+x^4) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    seq(coeff(series((1-2*x-x^2)/(1-6*x-9*x^2+x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    LinearRecurrence[{6,9,0,-1}, {1,4,32,228}, 30] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x-x^2)/(1-6*x-9*x^2+x^4)) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033515_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-2*x-x^2)/(1-6*x-9*x^2+x^4)).list()
    A033515_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

G.f.: (1 - 2*x - x^2)/(1 - 6*x - 9*x^2 + x^4). - Alois P. Heinz, Dec 09 2013

A033517 Number of matchings in graph C_{5} X P_{n}.

Original entry on oeis.org

1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351, 144751259054, 3977955684680, 109319496849249, 3004244633718754, 82560623863809043, 2268875354470436757, 62351701497747569760, 1713507386797976483977, 47089453761312228669727, 1294080593187150583795074
Offset: 0

Views

Author

Keywords

Crossrefs

Row 5 of A287428.

Programs

  • GAP
    a:=[1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351];; for n in [9..30] do a[n]:=25*a[n-1]+76*a[n-2]-209*a[n-3]-159*a[n-4]+119*a[n-5]+40*a[n-6]=3*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2+209*x^3+159*x^4-119*x^5 -40*x^6+3*x^7+x^8) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    seq(coeff(series((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    LinearRecurrence[{25,76,-209,-159,119,40,-3,-1}, {1,11,342,9213,253880, 6974078,191668283,5267252351}, 30] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1 -25*x-76*x^2+209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8)) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3 +159*x^4-119*x^5-40*x^6+3*x^7+x^8)).list()
    A077952_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

G.f.: (1 - 14*x - 9*x^2 + 36*x^3 + 21*x^4 - 2*x^5 - x^6)/(1 - 25*x - 76*x^2 + 209*x^3 + 159*x^4 - 119*x^5 - 40*x^6 + 3*x^7 + x^8). - Alois P. Heinz, Dec 09 2013

A033518 Number of matchings in graph C_{6} X P_{n}.

Original entry on oeis.org

1, 18, 1104, 57536, 3079253, 164206124, 8761336545, 467431319920, 24938493433976, 1330521524829842, 70986162750517765, 3787263138969145376, 202058564666736227181, 10780255299668629970930, 575149608382918617117024, 30685458073339150537724112
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 6 of A287428.

Formula

G.f.: (x^11 -3*x^10 -60*x^9 +252*x^8 +153*x^7 -1427*x^6 +771*x^5 +1007*x^4 -452*x^3 -84*x^2 +35*x -1) / ( -x^13 +5*x^12 +90*x^11 -424*x^10 -1420*x^9 +6022*x^8 +1276*x^7 -14388*x^6 +5806*x^5 +5076*x^4 -2616*x^3 +66*x^2 +53*x -1). - Alois P. Heinz, Dec 09 2013

A033519 Number of matchings in graph C_{7} X P_{n}.

Original entry on oeis.org

1, 29, 3544, 356863, 37071837, 3834744194, 396924243197, 41080815923665, 4251834519798256, 440060916969339903, 45545908457817115829, 4713960298263277400742, 487890626842308225478637, 50496238510861366500952793, 5226315005423375187288746048
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 7 of A287428.

Formula

G.f.: -(x^16 +5*x^15 -144*x^14 -917*x^13 +2525*x^12 +18314*x^11 -9907*x^10 -81619*x^9 +18056*x^8 +116675*x^7 -14719*x^6 -49054*x^5 -187*x^4 +4457*x^3 -20*x^2 -69*x +1) / (x^18 +6*x^17 -210*x^16 -1164*x^15 +10306*x^14 +54922*x^13 -76144*x^12 -470662*x^11 +132726*x^10 +1274736*x^9 +24246*x^8 -1032670*x^7 -58000*x^6 +244690*x^5 +158*x^4 -15844*x^3 +722*x^2 +98*x -1). - Alois P. Heinz, Dec 09 2013

A033520 Number of matchings in graph C_{8} X P_{n}.

Original entry on oeis.org

1, 47, 11396, 2217871, 447264801, 89761235312, 18027314711921, 3620162014192047, 726995373373259268, 145993770068726584623, 29318189070923580394385, 5887622256467996898381824, 1182340968901089528485742513, 237435437338572028041097654463
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 8 of A287428.

Formula

G.f.: -(x^28 -15*x^27 -284*x^26 +5183*x^25 +5371*x^24 -366892*x^23 +814436*x^22 +8226936*x^21 -29920872*x^20 -57862312*x^19 +331173012*x^18 -7873260*x^17 -1396434310*x^16 +1211992974*x^15 +1877432864*x^14 -2719474366*x^13 -471197866*x^12 +1952262300*x^11 -397859476*x^10 -507235480*x^9 +186066152*x^8 +41696904*x^7 -22010724*x^6 +36860*x^5 +598453*x^4 -36831*x^3 -2052*x^2 +159*x -1) / (x^30 -14*x^29 -430*x^28 +6634*x^27 +38158*x^26 -871958*x^25 +1251837*x^24 +29038240*x^23 -101668292*x^22 -290911416*x^21 +1623376452*x^20 +319719232*x^19 -9632041694*x^18 +7238239524*x^17 +21683751232*x^16 -26978306260*x^15 -17795407872*x^14 +34467592724*x^13 +1093570370*x^12 -17442114832*x^11 +3542012836*x^10 +3435559720*x^9 -1062456996*x^8 -223403632*x^7 +95033757*x^6 -1202342*x^5 -1914226*x^4 +150650*x^3 +338*x^2 -206*x +1). - Alois P. Heinz, Dec 09 2013

A033521 Number of matchings in graph C_{9} X P_{n}.

Original entry on oeis.org

1, 76, 36626, 13775700, 5392866995, 2099687534810, 818177759586592, 318778982954630760, 124205035822005824254, 48393567952045732290238, 18855421270525299234217319, 7346573263558160357598269172, 2862420221714879808794571247043
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 9 of A287428.

A033522 Number of matchings in graph C_{10} X P_{n}.

Original entry on oeis.org

1, 123, 117732, 85579087, 65035723280, 49125060601108, 37140865202938885, 28076586641702173315, 21224865471367565301932, 16045172079162180370051008, 12129530424108426130365136337, 9169456015979482738524196819196, 6931754273289828570289322265111621
Offset: 0

Views

Author

Keywords

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Row 10 of A287428.
Showing 1-10 of 13 results. Next