A033516
Number of matchings in graph C_{4} X P_{n}.
Original entry on oeis.org
1, 7, 108, 1511, 21497, 305184, 4334009, 61545775, 873996300, 12411393231, 176250978417, 2502894414208, 35542954271729, 504736272807255, 7167628868280044, 101785638086283959, 1445431440583263081, 20526196904667164704, 291487197206091205801
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- J. L. Hock, R. B. McQuistan< The occupation statistics for indistinguishable dumbbells on a 2X2XN lattice space, J. Math. Phys 24 (7) (1983) 1859, Table 1.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (14,6,-46,18,2,-1).
-
a:=[1,7,108,1511,21497,305184];; for n in [4..30] do a[n]:=14*a[n-1]+6*a[n-2]-46*a[n-3]+18*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 26 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5+x^6) )); // G. C. Greubel, Oct 26 2019
-
seq(coeff(series((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4 -2*x^5+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
-
LinearRecurrence[{14,6,-46,18,2,-1}, {1,7,108,1511,21497,305184}, 30] (* G. C. Greubel, Oct 26 2019 *)
-
my(x='x+O('x^30)); Vec((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2 +46*x^3-18*x^4-2*x^5+x^6)) \\ G. C. Greubel, Oct 26 2019
-
def A033516_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5 +x^6) ).list()
A033516_list(30) # G. C. Greubel, Oct 26 2019
A102080
Number of matchings in the C_n X P_2 (n-prism) graph.
Original entry on oeis.org
2, 12, 32, 108, 342, 1104, 3544, 11396, 36626, 117732, 378424, 1216380, 3909830, 12567448, 40395792, 129844996, 417363330, 1341539196, 4312135920, 13860583628, 44552347606, 143205490528, 460308235560, 1479577849604, 4755836293842, 15286778495572
Offset: 1
a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings:
(i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
- Colin Barker, Table of n, a(n) for n = 1..1000
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (Eq. (23) and Table IV).
- Eric Weisstein's World of Mathematics, Independent Edge Set.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,4,0,-1).
-
a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019
-
a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
-
Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}]
LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *)
CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
-
Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
-
def A102080_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list()
a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
A102090
Number of matchings in the C_n X P_3 graph (C_n is the cycle graph on n vertices and P_3 is the path graph on 3 vertices).
Original entry on oeis.org
47, 228, 1511, 9213, 57536, 356863, 2217871, 13775700, 85579087, 531616825, 3302453192, 20515048427, 127440964999, 791672146068, 4917923140383, 30550483740725, 189781751728736, 1178937572877255, 7323643025265351
Offset: 2
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (52) and Table VII).
- Index entries for linear recurrences with constant coefficients, signature (3,19,10,-24,-10,11,1,-1).
-
a:=[47,228,1511,9213,57536, 356863,2217871,13775700];; for n in [9..30] do a[n]:=3*a[n-1]+19*a[n-2]+10*a[n-3]-24*a[n-4]-10*a[n-5] + 11*a[n-6]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 27 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5-5*x^6-3*x^7)/((1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) )); // G. C. Greubel, Oct 27 2019
-
a[2]:=47: a[3]:=228: a[4]:=1511: a[5]:=9213: a[6]:=57536: a[7]:=356863: a[8]:=2217871: a[9]:=13775700: for n from 10 to 23 do a[n]:=3*a[n-1] +19*a[n-2]+10*a[n-3]-24*a[n-4]-10*a[n-5]+11*a[n-6]+a[n-7]-a[n-8] od: seq(a[n],n=2..23);
-
LinearRecurrence[{3,19,10,-24,-10,11,1,-1}, {47,228,1511,9213,57536, 356863,2217871,13775700}, 30] (* Harvey P. Dale, Oct 24 2011 *)
-
my(x='x+O('x^30)); Vec(x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5 -5*x^6-3*x^7)/((1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5))) \\ G. C. Greubel, Oct 27 2019
-
def A102090_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(x^2*(47+87*x-66*x^2-122*x^3+36*x^4+40*x^5-5*x^6-3*x^7)/( (1+x)*(1+x-x^2)*(1-5*x-9*x^2+9*x^3+x^4-x^5))).list()
A102090_list(30) # G. C. Greubel, Oct 27 2019
A033515
Number of matchings in graph C_{3} X P_{n}.
Original entry on oeis.org
1, 4, 32, 228, 1655, 11978, 86731, 627960, 4546684, 32919766, 238352021, 1725762060, 12495193865, 90470101964, 655039004548, 4742739182904, 34339290944491, 248629928211118, 1800178148762579, 13033995507292632, 94371237091674512, 683284752187469642
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research reports, No 12, 1996, Department of Mathematics, Umea University.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (6,9,0,-1).
-
a:=[1,4,32,228];; for n in [5..30] do a[n]:=6*a[n-1]+9*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 26 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x-x^2)/(1-6*x-9*x^2+x^4) )); // G. C. Greubel, Oct 26 2019
-
seq(coeff(series((1-2*x-x^2)/(1-6*x-9*x^2+x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
-
LinearRecurrence[{6,9,0,-1}, {1,4,32,228}, 30] (* G. C. Greubel, Oct 26 2019 *)
-
my(x='x+O('x^30)); Vec((1-2*x-x^2)/(1-6*x-9*x^2+x^4)) \\ G. C. Greubel, Oct 26 2019
-
def A033515_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-2*x-x^2)/(1-6*x-9*x^2+x^4)).list()
A033515_list(30) # G. C. Greubel, Oct 26 2019
A033517
Number of matchings in graph C_{5} X P_{n}.
Original entry on oeis.org
1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351, 144751259054, 3977955684680, 109319496849249, 3004244633718754, 82560623863809043, 2268875354470436757, 62351701497747569760, 1713507386797976483977, 47089453761312228669727, 1294080593187150583795074
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research reports, No 12, 1996, Department of Mathematics, Umea University.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (25,76,-209,-159,119,40,-3,-1).
-
a:=[1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351];; for n in [9..30] do a[n]:=25*a[n-1]+76*a[n-2]-209*a[n-3]-159*a[n-4]+119*a[n-5]+40*a[n-6]=3*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 26 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2+209*x^3+159*x^4-119*x^5 -40*x^6+3*x^7+x^8) )); // G. C. Greubel, Oct 26 2019
-
seq(coeff(series((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
-
LinearRecurrence[{25,76,-209,-159,119,40,-3,-1}, {1,11,342,9213,253880, 6974078,191668283,5267252351}, 30] (* G. C. Greubel, Oct 26 2019 *)
-
my(x='x+O('x^30)); Vec((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1 -25*x-76*x^2+209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8)) \\ G. C. Greubel, Oct 26 2019
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3 +159*x^4-119*x^5-40*x^6+3*x^7+x^8)).list()
A077952_list(30) # G. C. Greubel, Oct 26 2019
A033518
Number of matchings in graph C_{6} X P_{n}.
Original entry on oeis.org
1, 18, 1104, 57536, 3079253, 164206124, 8761336545, 467431319920, 24938493433976, 1330521524829842, 70986162750517765, 3787263138969145376, 202058564666736227181, 10780255299668629970930, 575149608382918617117024, 30685458073339150537724112
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
A033519
Number of matchings in graph C_{7} X P_{n}.
Original entry on oeis.org
1, 29, 3544, 356863, 37071837, 3834744194, 396924243197, 41080815923665, 4251834519798256, 440060916969339903, 45545908457817115829, 4713960298263277400742, 487890626842308225478637, 50496238510861366500952793, 5226315005423375187288746048
Offset: 0
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research reports, No 12, 1996, Department of Mathematics, Umea University.
A033520
Number of matchings in graph C_{8} X P_{n}.
Original entry on oeis.org
1, 47, 11396, 2217871, 447264801, 89761235312, 18027314711921, 3620162014192047, 726995373373259268, 145993770068726584623, 29318189070923580394385, 5887622256467996898381824, 1182340968901089528485742513, 237435437338572028041097654463
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
A033521
Number of matchings in graph C_{9} X P_{n}.
Original entry on oeis.org
1, 76, 36626, 13775700, 5392866995, 2099687534810, 818177759586592, 318778982954630760, 124205035822005824254, 48393567952045732290238, 18855421270525299234217319, 7346573263558160357598269172, 2862420221714879808794571247043
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
A033522
Number of matchings in graph C_{10} X P_{n}.
Original entry on oeis.org
1, 123, 117732, 85579087, 65035723280, 49125060601108, 37140865202938885, 28076586641702173315, 21224865471367565301932, 16045172079162180370051008, 12129530424108426130365136337, 9169456015979482738524196819196, 6931754273289828570289322265111621
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
Showing 1-10 of 13 results.
Comments