cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A287428 Array read by antidiagonals: T(m,n) is the number of matchings in the stacked prism graph C_m X P_n.

Original entry on oeis.org

1, 2, 3, 3, 12, 4, 5, 47, 32, 7, 8, 185, 228, 108, 11, 13, 728, 1655, 1511, 342, 18, 21, 2865, 11978, 21497, 9213, 1104, 29, 34, 11275, 86731, 305184, 253880, 57536, 3544, 47, 55, 44372, 627960, 4334009, 6974078, 3079253, 356863, 11396, 76
Offset: 1

Views

Author

Andrew Howroyd, May 25 2017

Keywords

Comments

Row 1 is the number of matchings in P_n and row 2 is the number of matchings in G X P_n where G is a double edge. These choices give the best fit with the column linear recurrences.

Examples

			Table starts:
======================================================================
m\n|  1    2      3        4          5            6              7
---|------------------------------------------------------------------
1  |  1    2      3        5          8           13             21 ...
2  |  3   12     47      185        728         2865          11275 ...
3  |  4   32    228     1655      11978        86731         627960 ...
4  |  7  108   1511    21497     305184      4334009       61545775 ...
5  | 11  342   9213   253880    6974078    191668283     5267252351 ...
6  | 18 1104  57536  3079253  164206124   8761336545   467431319920 ...
7  | 29 3544 356863 37071837 3834744194 396924243197 41080815923665 ...
...
		

Crossrefs

Columns 2..3 are A102080, A102090.
Cf. A028420 (P_m X P_n), A270246 (C_m X C_n), A270227 (K_m X K_n).

A284702 Number of dominating sets in the n-prism graph.

Original entry on oeis.org

3, 11, 51, 183, 663, 2435, 8935, 32775, 120219, 440971, 1617531, 5933271, 21763823, 79831875, 292831311, 1074134535, 3940032883, 14452434635, 53012975555, 194456895863, 713287340551, 2616409296963, 9597250953527, 35203676264199, 129130605057163
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, May 10 2017

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, 5, 1, 1, -1, -1}, {3, 11, 51, 183, 663, 2435,
      8935}, 20] (* Eric W. Weisstein, May 17 2017 *)
    Rest[CoefficientList[Series[x (-7 x^6 - 6 x^5 + 5 x^4 + 4 x^3 + 15 x^2 + 2 x + 3)/((x^2 + 1) (x^5 + x^4 - 2 x^3 - 2 x^2 - 3 x + 1)), {x, 0, 20}], x]] (* G. C. Greubel, May 17 2017 *)
    Table[2 Cos[n Pi/2] + RootSum[1 + #1 - 2 #1^2 - 2 #1^3 - 3 #1^4 + #1^5 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 26 2017 *)
  • PARI
    Vec((-7*x^6-6*x^5+5*x^4+4*x^3+15*x^2+2*x+3)/((x^2+1)*(x^5+x^4-2*x^3-2*x^2-3*x+1))+O(x^15)) \\ Andrew Howroyd, May 10 2017

Formula

From Andrew Howroyd, May 10 2017: (Start)
a(n) = 3*a(n-1) + a(n-2) + 5*a(n-3) + a(n-4) + a(n-5) - a(n-6) - a(n-7).
G.f.: x*(-7*x^6 - 6*x^5 + 5*x^4 + 4*x^3 + 15*x^2 + 2*x + 3)/((x^2 + 1)*(x^5 + x^4 - 2*x^3 - 2*x^2 - 3*x + 1)). (End)

Extensions

a(1)-a(2) and a(16)-a(25) from Andrew Howroyd, May 10 2017

A284703 Number of maximal matchings in the n-prism graph.

Original entry on oeis.org

1, 5, 10, 17, 51, 98, 211, 457, 964, 2095, 4489, 9638, 20723, 44469, 95550, 205225, 440777, 946808, 2033571, 4367947, 9381928, 20151345, 43283195, 92967814, 199685501, 428904403, 921243124, 1978737477, 4250128177, 9128846128, 19607840133, 42115660425
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, May 16 2017

Crossrefs

Programs

  • Magma
    I:=[1,5,10,17,51,98,211,457]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3)-Self(n-4)+2*Self(n-5)+Self(n-6)-Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 17 2017
  • Mathematica
    LinearRecurrence[{1, 2, 1, -1, 2, 1, -1, -1}, {1, 5, 10, 17, 51, 98, 211, 457}, 40] (* Vincenzo Librandi, May 17 2017 *)
    CoefficientList[Series[(-8 x^7 - 7 x^6 + 6 x^5 + 10 x^4 - 4 x^3 + 3 x^2 + 4 x + 1) / ((x^2 - x + 1) (x^3 - x - 1) (x^3 + 2 x^2 + x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 17 2017 *)
    Table[2 Cos[n Pi/3] + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &] +
      RootSum[-1 + #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 17 2017 *)
  • PARI
    Vec((-8*x^7-7*x^6+6*x^5+10*x^4-4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1))+O(x^20)) \\ Andrew Howroyd, May 16 2017
    

Formula

From Andrew Howroyd, May 16 2017 (Start)
a(n) = a(n-1)+2*a(n-2)+a(n-3)-a(n-4)+2*a(n-5)+a(n-6)-a(n-7)-a(n-8) for n>8.
G.f.: x*(-8*x^7-7*x^6+6*x^5+10*x^4 -4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1)).
(End)

Extensions

a(1)-a(2) and a(20)-a(32) from Andrew Howroyd, May 16 2017

A338153 a(n) is the number of acyclic orientations of the edges of the n-prism.

Original entry on oeis.org

204, 1862, 14700, 109334, 790524, 5633222, 39828300, 280376054, 1968934044, 13807724582, 96754776300, 677686169174, 4745413960764, 33224340503942, 232596153986700, 1628276158432694, 11398345428510684, 79790067272259302, 558537067986067500, 3909785864202510614
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 4, the 4-prism is the 3-dimensional cube, so a(4) = A334247(3) = 1862.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (cube), A338152 (n-demihypercube), A338154 (n-antiprism).

Programs

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 2*x^3*(102 - 497*x + 742*x^2 - 392*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 7*x)).
a(n) = 14*a(n-1) - 63*a(n-2) + 106*a(n-3) - 56*a(n-4) for n>6.
(End)
a(n) = 5 + 7^n - 2^(n+1) - 2*4^n. - Peter Kagey, Nov 15 2020

A270246 Array read by antidiagonals: T(n,m) is the number of matchings in the torus grid graph C_n X C_m.

Original entry on oeis.org

1, 2, 2, 4, 7, 4, 7, 32, 32, 7, 11, 108, 370, 108, 11, 18, 342, 2764, 2764, 342, 18, 29, 1104, 19874, 41025, 19874, 1104, 29, 47, 3544, 144108, 576287, 576287, 144108, 3544, 47, 76, 11396, 1043060, 8205424, 15637256, 8205424, 1043060, 11396, 76
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Examples

			The start of the sequence as table:
*   1    2      4       7        11          18 ...
*   2    7     32     108       342        1104 ...
*   4   32    370    2764     19874      144108 ...
*   7  108   2764   41025    576287     8205424 ...
*  11  342  19874  576287  15637256   430996378 ...
*  18 1104 144108 8205424 430996378 23079663560 ...
* ...
		

Crossrefs

Main diagonal is A270247. Row 2 is A102080.

Formula

T(1, m) = A000032(m) for m<>2.

A102079 Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices).

Original entry on oeis.org

1, 6, 5, 1, 9, 18, 4, 1, 12, 42, 44, 9, 1, 15, 75, 145, 95, 11, 1, 18, 117, 336, 420, 192, 20, 1, 21, 168, 644, 1225, 1085, 371, 29, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 49, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 76, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 125
Offset: 2

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

Row n contains n+1 terms.
Equivalently, the n-th row gives the coefficients of the matching-generating polynomial of the n-prism graph. - Eric W. Weisstein, Apr 03 2018

Examples

			T(3,3)=4 because in the graph C_3 X P_2 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following
3-matchings: {AA',BB',CC'}, {AA',BC,B'C'}, {BB',AC,A'C'} and {CC',AB,A'B'} (as a matter of fact, these are perfect matchings).
Triangle starts:
1, 6, 5;
1, 9, 18, 4;
1, 12, 42, 44, 9;
1, 15, 75, 145, 95, 11;
		

Crossrefs

Programs

  • Maple
    G:=-z^2*(5*t^4*z^2-1+z^3*t^4+z^3*t^5-6*t-5*t^2-2*z*t-7*z*t^2+z*t^3-z^2*t^2)/(z*t+1)/(z^3*t^3-z^2*t-2*z*t-z+1) : Gser:=simplify(series(G,z=0,13)): for n from 2 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 2 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + x, 1 + 6 x + 5 x^2, 1 + 9 x + 18 x^2 + 4 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 9 x^4}, {2, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[CoefficientList[Series[-( -1 - 6 x - 5 x^2 - 2 x z - 7 x^2 z + x^3 z - x^2 z^2 + 5 x^4 z^2 + x^4 z^3 + x^5 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3)), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

G.f.: -z^2*(5t^4*z^2-1+t^4*z^3+t^5*z^3-6t-5t^2-2tz-7zt^2+zt^3-t^2*z^2)/[(1+tz)(t^3*z^3-tz^2-2tz-z+1)].
The row generating polynomials A[n] satisfy A[n]=(1+t)A[n-1]+2t(1+t)A[n-2]+ t^2*(1-t)A[n-3]-t^4*A[n-4] with A[2]=1+6t+5t^2, A[3]=1+9t+18t^2+4t^3, A[4]=1+12t+42t^2+44t^3+9t^4 and A[5]=1+15t+75t^2+145t^3+95t^4+11t^5.

A270247 Number of matchings in the n X n torus grid graph C_n X C_n.

Original entry on oeis.org

1, 7, 370, 41025, 15637256, 23079663560, 127193770624285, 2645142169931308801, 206932904585998805434690, 60953421285412135689567940992, 67583556205239600880061198746186383, 282092296203355454009618109524478429807744
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

C_{n} X C_{n} is also known as the (n,n)-torus grid graph.

Crossrefs

Showing 1-7 of 7 results.