A287428
Array read by antidiagonals: T(m,n) is the number of matchings in the stacked prism graph C_m X P_n.
Original entry on oeis.org
1, 2, 3, 3, 12, 4, 5, 47, 32, 7, 8, 185, 228, 108, 11, 13, 728, 1655, 1511, 342, 18, 21, 2865, 11978, 21497, 9213, 1104, 29, 34, 11275, 86731, 305184, 253880, 57536, 3544, 47, 55, 44372, 627960, 4334009, 6974078, 3079253, 356863, 11396, 76
Offset: 1
Table starts:
======================================================================
m\n| 1 2 3 4 5 6 7
---|------------------------------------------------------------------
1 | 1 2 3 5 8 13 21 ...
2 | 3 12 47 185 728 2865 11275 ...
3 | 4 32 228 1655 11978 86731 627960 ...
4 | 7 108 1511 21497 305184 4334009 61545775 ...
5 | 11 342 9213 253880 6974078 191668283 5267252351 ...
6 | 18 1104 57536 3079253 164206124 8761336545 467431319920 ...
7 | 29 3544 356863 37071837 3834744194 396924243197 41080815923665 ...
...
A284702
Number of dominating sets in the n-prism graph.
Original entry on oeis.org
3, 11, 51, 183, 663, 2435, 8935, 32775, 120219, 440971, 1617531, 5933271, 21763823, 79831875, 292831311, 1074134535, 3940032883, 14452434635, 53012975555, 194456895863, 713287340551, 2616409296963, 9597250953527, 35203676264199, 129130605057163
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..200 from Andrew Howroyd)
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (3,1,5,1,1,-1,-1).
-
LinearRecurrence[{3, 1, 5, 1, 1, -1, -1}, {3, 11, 51, 183, 663, 2435,
8935}, 20] (* Eric W. Weisstein, May 17 2017 *)
Rest[CoefficientList[Series[x (-7 x^6 - 6 x^5 + 5 x^4 + 4 x^3 + 15 x^2 + 2 x + 3)/((x^2 + 1) (x^5 + x^4 - 2 x^3 - 2 x^2 - 3 x + 1)), {x, 0, 20}], x]] (* G. C. Greubel, May 17 2017 *)
Table[2 Cos[n Pi/2] + RootSum[1 + #1 - 2 #1^2 - 2 #1^3 - 3 #1^4 + #1^5 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 26 2017 *)
-
Vec((-7*x^6-6*x^5+5*x^4+4*x^3+15*x^2+2*x+3)/((x^2+1)*(x^5+x^4-2*x^3-2*x^2-3*x+1))+O(x^15)) \\ Andrew Howroyd, May 10 2017
A284703
Number of maximal matchings in the n-prism graph.
Original entry on oeis.org
1, 5, 10, 17, 51, 98, 211, 457, 964, 2095, 4489, 9638, 20723, 44469, 95550, 205225, 440777, 946808, 2033571, 4367947, 9381928, 20151345, 43283195, 92967814, 199685501, 428904403, 921243124, 1978737477, 4250128177, 9128846128, 19607840133, 42115660425
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (1,2, 1,-1,2,1,-1,-1).
-
I:=[1,5,10,17,51,98,211,457]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3)-Self(n-4)+2*Self(n-5)+Self(n-6)-Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 17 2017
-
LinearRecurrence[{1, 2, 1, -1, 2, 1, -1, -1}, {1, 5, 10, 17, 51, 98, 211, 457}, 40] (* Vincenzo Librandi, May 17 2017 *)
CoefficientList[Series[(-8 x^7 - 7 x^6 + 6 x^5 + 10 x^4 - 4 x^3 + 3 x^2 + 4 x + 1) / ((x^2 - x + 1) (x^3 - x - 1) (x^3 + 2 x^2 + x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 17 2017 *)
Table[2 Cos[n Pi/3] + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &] +
RootSum[-1 + #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 17 2017 *)
-
Vec((-8*x^7-7*x^6+6*x^5+10*x^4-4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1))+O(x^20)) \\ Andrew Howroyd, May 16 2017
A338153
a(n) is the number of acyclic orientations of the edges of the n-prism.
Original entry on oeis.org
204, 1862, 14700, 109334, 790524, 5633222, 39828300, 280376054, 1968934044, 13807724582, 96754776300, 677686169174, 4745413960764, 33224340503942, 232596153986700, 1628276158432694, 11398345428510684, 79790067272259302, 558537067986067500, 3909785864202510614
Offset: 3
For n = 4, the 4-prism is the 3-dimensional cube, so a(4) = A334247(3) = 1862.
A270246
Array read by antidiagonals: T(n,m) is the number of matchings in the torus grid graph C_n X C_m.
Original entry on oeis.org
1, 2, 2, 4, 7, 4, 7, 32, 32, 7, 11, 108, 370, 108, 11, 18, 342, 2764, 2764, 342, 18, 29, 1104, 19874, 41025, 19874, 1104, 29, 47, 3544, 144108, 576287, 576287, 144108, 3544, 47, 76, 11396, 1043060, 8205424, 15637256, 8205424, 1043060, 11396, 76
Offset: 1
The start of the sequence as table:
* 1 2 4 7 11 18 ...
* 2 7 32 108 342 1104 ...
* 4 32 370 2764 19874 144108 ...
* 7 108 2764 41025 576287 8205424 ...
* 11 342 19874 576287 15637256 430996378 ...
* 18 1104 144108 8205424 430996378 23079663560 ...
* ...
A102079
Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices).
Original entry on oeis.org
1, 6, 5, 1, 9, 18, 4, 1, 12, 42, 44, 9, 1, 15, 75, 145, 95, 11, 1, 18, 117, 336, 420, 192, 20, 1, 21, 168, 644, 1225, 1085, 371, 29, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 49, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 76, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 125
Offset: 2
T(3,3)=4 because in the graph C_3 X P_2 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following
3-matchings: {AA',BB',CC'}, {AA',BC,B'C'}, {BB',AC,A'C'} and {CC',AB,A'B'} (as a matter of fact, these are perfect matchings).
Triangle starts:
1, 6, 5;
1, 9, 18, 4;
1, 12, 42, 44, 9;
1, 15, 75, 145, 95, 11;
-
G:=-z^2*(5*t^4*z^2-1+z^3*t^4+z^3*t^5-6*t-5*t^2-2*z*t-7*z*t^2+z*t^3-z^2*t^2)/(z*t+1)/(z^3*t^3-z^2*t-2*z*t-z+1) : Gser:=simplify(series(G,z=0,13)): for n from 2 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 2 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + x, 1 + 6 x + 5 x^2, 1 + 9 x + 18 x^2 + 4 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 9 x^4}, {2, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
CoefficientList[CoefficientList[Series[-( -1 - 6 x - 5 x^2 - 2 x z - 7 x^2 z + x^3 z - x^2 z^2 + 5 x^4 z^2 + x^4 z^3 + x^5 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3)), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
A270247
Number of matchings in the n X n torus grid graph C_n X C_n.
Original entry on oeis.org
1, 7, 370, 41025, 15637256, 23079663560, 127193770624285, 2645142169931308801, 206932904585998805434690, 60953421285412135689567940992, 67583556205239600880061198746186383, 282092296203355454009618109524478429807744
Offset: 1
Showing 1-7 of 7 results.
Comments