cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A220638 Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 1, 10, 369, 92801, 128171936, 1040315976961, 48590896359378961, 13140746227808545282304, 20540255065209806005525289313, 185661218973084382181156348510614065, 9703072851259276652446200332793680010752000, 2932144456272256572796083896528773941130429279461761
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Main diagonal of A220644.
Row sums of A243424. - Alois P. Heinz, Jun 04 2014
Number of matchings (i.e., Hosoya index) in the n X n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..8..6..4....0..9..7....6..4..0....0..6..4....9..0..8....6..4..0....8..0..0
..2..7..0....9..3..1....8..6..4....6..4..7....0..1..2....0..0..8....2..6..4
..3..6..4....0..1..0....2..0..0....0..3..0....0..0..0....0..0..2....6..4..0
		

Crossrefs

Cf. A239273 (perfect matchings), A063443 (independent vertex sets), A234622 (cycles).

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od; b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k b(n, [true$(n*2)]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join [l[[d+1 ;; 2d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; b[n, ReplacePart[l, k -> f]] + If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, k | k + d + 1 -> f]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, k | k + d - 1 -> f]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, k | k + d -> f]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, k | k + 1 -> f]], 0]]]; a[n_] := b[n, Array[True&, 2n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)

Extensions

a(10)-a(12) from Alois P. Heinz, Jun 03 2014

A239273 Number of domicule tilings of a 2n X 2n square grid.

Original entry on oeis.org

1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
Number of perfect matchings in the 2n X 2n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			a(1) = 3:
  +---+   +---+   +---+
  |o o|   |o o|   |o-o|
  || ||   | X |   |   |
  |o o|   |o o|   |o-o|
  +---+   +---+   +---+.
a(2) = 280:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o|
  | X     | | X     | |       | | X  | || | \   / |
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |   /  || |   / / | ||  X  || |       | ||     ||
  |o o o o| |o o o o| |o o o o| |o-o o o| |o o o o|
  ||    \ | ||     || |       | |     X | | / /   |
  |o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
		

Crossrefs

Even bisection of main diagonal of A239264.

Programs

  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]];
    A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]];
    a[n_] := A[2n, 2n];
    Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)

Formula

a(n) = A239264(2n,2n).

Extensions

a(8) from Alois P. Heinz, Sep 30 2014
a(9) from Alois P. Heinz, Nov 23 2018

A243510 Number of ways the maximal number of domicules can be placed on an n X n square.

Original entry on oeis.org

1, 1, 3, 58, 280, 170985, 3037561, 35203565096, 3263262629905, 580992839261272720, 326207195516663381931, 811740344447523575023878026, 3011882198082438957330143630563, 98662906581850761030365769529236858241, 2565014347691062208319404612723752103028288
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Comments

Number of maximum matchings in the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			a(2) = 3:
  +---+  +---+  +---+
  |o-o|  |o o|  |o o|
  |   |  || ||  | X |
  |o-o|  |o o|  |o o|
  +---+  +---+  +---+.
a(3) = 58:
  +-----+  +-----+  +-----+
  |o-o o|  |o o o|  |o o-o|
  |    ||  | X  ||  | \   |
  |o   o|  |o o o|  |o o o|
  ||    |  |     |  ||  / |
  |o o-o|  |o-o  |  |o o  |
  +-----+  +-----+  +-----+  ... .
		

Crossrefs

Cf. A243511.
Even bisection gives A239273.

Formula

a(n) = A243424(n,floor(n^2/2)).

A243464 Number of ways 2 domicules can be placed on an n X n square.

Original entry on oeis.org

0, 0, 3, 110, 657, 2172, 5375, 11178, 20685, 35192, 56187, 85350, 124553, 175860, 241527, 324002, 425925, 550128, 699635, 877662, 1087617, 1333100, 1617903, 1946010, 2321597, 2749032, 3232875, 3777878, 4388985, 5071332, 5830247, 6671250, 7600053, 8622560
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(2) = 3:
+---+  +---+  +---+
|o-o|  |o o|  |o o|
|   |  || ||  | X |
|o-o|  |o o|  |o o|
+---+  +---+  +---+.
		

Crossrefs

Column k=2 of A243424.

Programs

  • Maple
    a:= n-> `if`(n=0, 0, (((8*n-24)*n-4)*n+63)*n-43):
    seq(a(n), n=0..50);

Formula

G.f.: x^2*(43*x^3-137*x^2-95*x-3)/(x-1)^5.
a(n) = -43+63*n-4*n^2-24*n^3+8*n^4 for n>0, a(0) = 0.

A243465 Number of ways 3 domicules can be placed on an n X n square.

Original entry on oeis.org

0, 0, 0, 180, 4890, 36028, 154434, 488660, 1271450, 2883900, 5907298, 11182644, 19877850, 33562620, 54291010, 84691668, 128065754, 188492540, 270942690, 381399220, 526986138, 716104764, 958577730, 1265800660, 1650901530, 2128907708, 2716920674, 3434298420
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(3) = 180:
+-----+  +-----+  +-----+  +-----+
|o-o  |  |  o  |  |  o  |  |  o  |
|     |  |   \ |  | /   |  | /   |
|o-o  |  |o o o|  |o o  |  |o o o|
|     |  || |  |  | /   |  |   X |
|  o-o|  |o o  |  |o o-o|  |  o o|
+-----+  +-----+  +-----+  +-----+  ... .
		

Crossrefs

Column k=3 of A243424.

Programs

  • Maple
    a:= n-> `if`(n<3, 0, ((((((32*n-144)*n-96)*n+1188)*n-854)
             *n-2328)*n+2574)/3):
    seq(a(n), n=0..50);

Formula

G.f.: 2*x^3*(15*x^6-167*x^5+320*x^4+686*x^3-2789*x^2-1815*x-90)/(x-1)^7.
a(n) = (2574-2328*n-144*n^5-96*n^4+1188*n^3-854*n^2+32*n^6)/3 for n>=3, a(n) = 0 for n<3.

A243466 Number of ways 4 domicules can be placed on an n X n square.

Original entry on oeis.org

0, 0, 0, 58, 18343, 362643, 2911226, 14601844, 54738489, 168157793, 446728228, 1062085146, 2312934779, 4690690399, 8967633918, 16312226288, 28436620141, 47781858189, 77746670984, 122966217718, 189647543823, 285968959211, 422550971074, 613006835244
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(3) = 58:
+-----+  +-----+  +-----+  +-----+
|o-o o|  |o o  |  |o-o o|  |o-o  |
|   / |  | \ \ |  |    ||  |     |
|o o  |  |o o o|  |o   o|  |o o o|
||    |  ||    |  ||    |  ||  X |
|o o-o|  |o o-o|  |o o-o|  |o o o|
+-----+  +-----+  +-----+  +-----+  ... .
		

Crossrefs

Column k=4 of A243424.

Programs

  • Maple
    a:= n-> `if`(n<4, [0$3, 58][n+1], ((((((((64*n-384)*n-448)*n
            +6480)*n-4984)*n-35304)*n+50017)*n+61647)*n-104802)/6):
    seq(a(n), n=0..50);

Formula

G.f.: -x^3*(196*x^9 -1380*x^8 -1019*x^7 +21464*x^6 -32073*x^5 -77546*x^4 +302915*x^3 +199644*x^2 +17821*x +58) / (x-1)^9.
a(n) = (-104802 +61647*n +50017*n^2 -35304*n^3 -4984*n^4 +6480*n^5 -448*n^6 -384*n^7 +64*n^8)/6 for n>=4, a(3) = 58, a(n) = 0 for n<3.

A243467 Number of ways 5 domicules can be placed on an n X n square.

Original entry on oeis.org

0, 0, 0, 0, 33792, 2307376, 38049764, 316687056, 1756247962, 7430841848, 25895095920, 77947547416, 209206118486, 511919916960, 1160763672124, 2468985096704, 4973232330258, 9557709330856, 17631022607048, 31372223986440, 54066152166478, 90552261553040
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(4) = 33792:
+-------+  +-------+
|o-o o  |  |  o   o|
|     \ |  | /    ||
|  o   o|  |o o o o|
|   \   |  |   X   |
|o   o o|  |  o o  |
||    / |  |       |
|o   o  |  |  o-o  |
+-------+  +-------+   ... .
		

Crossrefs

Column k=5 of A243424.

Programs

  • Maple
    a:= n-> `if`(n<5, [0$4, 33792][n+1],((((((((((128*n-960)*n-1600)*n
             +27360)*n-22560)*n-285192)*n+493090)*n+1279635)*n-2896628)
             *n-2069823)*n+5464830)/15):
    seq(a(n), n=0..30);

Formula

G.f.: 2*x^4*(465*x^11 -2767*x^10 -1161*x^9 -3873*x^8 +262965*x^7 -1067787*x^6 +1243269*x^5 +2069157*x^4 -9734826*x^3 -7263594*x^2 -967832*x -16896) / (x-1)^11.
a(n) = (5464830 -2069823*n -2896628*n^2 +1279635*n^3 +493090*n^4 -285192*n^5 -22560*n^6 +27360*n^7 -1600*n^8 -960*n^9 +128*n^10)/15 for n>=5, a(4) = 33792, a(n) = 0 for n<=3.

A243511 Number of ways half the maximal number of domicules can be placed on an n X n square.

Original entry on oeis.org

1, 1, 6, 110, 18343, 9382388, 43019044258, 558605693874364, 66236678406528448449, 21324218858696872235790649, 63694548993039561351614359349824, 503614181552476916158019971522161589536, 37393123107750749849065997795023579513072683993, 7226766277015485498828489748946241590630740791829515424
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(2) = 6:
+---+  +---+  +---+  +---+  +---+  +---+
|o-o|  |   |  |o  |  |  o|  |o  |  |  o|
|   |  |   |  ||  |  |  ||  | \ |  | / |
|   |  |o-o|  |o  |  |  o|  |  o|  |o  |
+---+  +---+  +---+  +---+  +---+  +---+.
		

Crossrefs

Cf. A243510.

Formula

a(n) = A243424(n,floor(n^2/4)).
Showing 1-8 of 8 results.