cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243424 Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
The n-th row gives the coefficients of the matching-generating polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			T(2,1) = 6:
  +---+  +---+  +---+  +---+  +---+  +---+
  |o-o|  |   |  |o  |  |  o|  |o  |  |  o|
  |   |  |   |  ||  |  |  ||  | \ |  | / |
  |   |  |o-o|  |o  |  |  o|  |  o|  |o  |
  +---+  +---+  +---+  +---+  +---+  +---+
T(2,2) = 3:
  +---+  +---+  +---+
  |o-o|  |o o|  |o o|
  |   |  || ||  | X |
  |o-o|  |o o|  |o o|
  +---+  +---+  +---+
Triangle T(n,k) begins:
  1;
  1;
  1,  6,    3;
  1, 20,  110,   180,     58;
  1, 42,  657,  4890,  18343,   33792,   27380,     7416,      280;
  1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
  ...
		

Crossrefs

Columns k=0-5 give: A000012, A002943(n-1) for n>0, A243464, A243465, A243466, A243467.
Row sums give A220638.
T(n,floor(n^2/2)) gives A243510.
T(n,floor(n^2/4)) gives A243511.
Cf. A242861 (the same for dominoes), A239264.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             expand(b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, [true$(n*2)])):
    seq(T(n), n=0..7);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
      b[n, Table[True, 2n]]];
    Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
Showing 1-1 of 1 results.