A140518
Number of simple paths from corner to corner of an n X n grid with king-moves allowed.
Original entry on oeis.org
1, 5, 235, 96371, 447544629, 22132498074021, 10621309947362277575, 50819542770311581606906543, 2460791237088492025876789478191411, 1207644919895971862319430895789323709778193, 5996262208084349429209429097224046573095272337986011
Offset: 1
For example, when n=8 this is the number of ways to move a king from a1 to h8 without occupying any cell twice.
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 117, Addison-Wesley, 2009.
A220644
T(n,k) = number of ways to reciprocally link elements of an n X k array either to themselves or to exactly one king-move neighbor.
Original entry on oeis.org
1, 2, 2, 3, 10, 3, 5, 40, 40, 5, 8, 172, 369, 172, 8, 13, 728, 3755, 3755, 728, 13, 21, 3096, 37320, 92801, 37320, 3096, 21, 34, 13152, 373177, 2226936, 2226936, 373177, 13152, 34, 55, 55888, 3725843, 53841725, 128171936, 53841725, 3725843, 55888, 55, 89
Offset: 1
Some solutions for n=3 k=4 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4..8....6..4..0..0....8..0..0..0....9..6..4..8....6..4..0..0
..0..7..7..2....8..0..9..7....2..8..8..0....8..1..9..2....0..0..8..8
..3..3..6..4....2..0..3..1....0..2..2..0....2..6..4..1....0..0..2..2
A243424
Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).
Original entry on oeis.org
1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
Offset: 0
T(2,1) = 6:
+---+ +---+ +---+ +---+ +---+ +---+
|o-o| | | |o | | o| |o | | o|
| | | | || | | || | \ | | / |
| | |o-o| |o | | o| | o| |o |
+---+ +---+ +---+ +---+ +---+ +---+
T(2,2) = 3:
+---+ +---+ +---+
|o-o| |o o| |o o|
| | || || | X |
|o-o| |o o| |o o|
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
1;
1, 6, 3;
1, 20, 110, 180, 58;
1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280;
1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
...
-
b:= proc(n, l) option remember; local d, f, k;
d:= nops(l)/2; f:=false;
if n=0 then 1
elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
else for k to d while not l[k] do od;
expand(b(n, subsop(k=f, l))+
`if`(k1 and l[k+d+1],
x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
`if`(k>1 and n>1 and l[k+d-1],
x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
`if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
`if`(k (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, [true$(n*2)])):
seq(T(n), n=0..7);
-
b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
b[n, Table[True, 2n]]];
Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
A239273
Number of domicule tilings of a 2n X 2n square grid.
Original entry on oeis.org
1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0
a(1) = 3:
+---+ +---+ +---+
|o o| |o o| |o-o|
|| || | X | | |
|o o| |o o| |o-o|
+---+ +---+ +---+.
a(2) = 280:
+-------+ +-------+ +-------+ +-------+ +-------+
|o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o|
| X | | X | | | | X | || | \ / |
|o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
| / || | / / | || X || | | || ||
|o o o o| |o o o o| |o o o o| |o-o o o| |o o o o|
|| \ | || || | | | X | | / / |
|o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o|
+-------+ +-------+ +-------+ +-------+ +-------+ ...
Even bisection of main diagonal of
A239264.
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]];
A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]];
a[n_] := A[2n, 2n];
Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)
Showing 1-4 of 4 results.
Comments