cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A239264 Number A(n,k) of domicule tilings of a k X n grid; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 5, 5, 1, 1, 1, 0, 11, 0, 11, 0, 1, 1, 1, 21, 43, 43, 21, 1, 1, 1, 0, 43, 0, 280, 0, 43, 0, 1, 1, 1, 85, 451, 1563, 1563, 451, 85, 1, 1, 1, 0, 171, 0, 9415, 0, 9415, 0, 171, 0, 1, 1, 1, 341, 4945, 55553, 162409, 162409, 55553, 4945, 341, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Examples

			A(3,2) = 5:
  +-----+ +-----+ +-----+ +-----+ +-----+
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  ||    | ||  X | || | || | X  || |    ||
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  +-----+ +-----+ +-----+ +-----+ +-----+
A(4,3) = 43:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o o| |o o o-o| |o o-o o| |o o-o o| |o o-o o|
  ||  X  || | X     | | \   / | ||     || | \    ||
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |       | |     X | ||     || |   \ \ | ||    \ |
  |o-o o-o| |o-o o o| |o o-o o| |o-o o o| |o o-o o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
Square array A(n,k) begins:
  1, 1,  1,   1,    1,      1,       1, ...
  1, 0,  1,   0,    1,      0,       1, ...
  1, 1,  3,   5,   11,     21,      43, ...
  1, 0,  5,   0,   43,      0,     451, ...
  1, 1, 11,  43,  280,   1563,    9415, ...
  1, 0, 21,   0, 1563,      0,  162409, ...
  1, 1, 43, 451, 9415, 162409, 3037561, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A059841, A001045(n+1), A239265, A239266, A239267, A239268, A239269, A239270, A239271, A239272.
Bisection of main diagonal gives: A239273.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             `if`(k1 and l[k+d+1],
                                  b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                  b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k `if`(irem(n*k, 2)>0, 0,
        `if`(k>n, A(k, n), b(n, [true$(k*2)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which [n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n-1, Join[l[[d+1 ;; 2*d]], Array[True&, d]]], True, For[k=1, !l[[k]], k++]; If[k1 && l[[k+d+1]], b[n, ReplacePart[l, {k -> f, k+d+1 -> f}]], 0] + If[k>1 && n>1 && l[[k+d-1]], b[n, ReplacePart[l, {k -> f, k+d-1 -> f}]], 0] + If[n>1 && l[[k+d]], b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]; A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)

A220638 Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 1, 10, 369, 92801, 128171936, 1040315976961, 48590896359378961, 13140746227808545282304, 20540255065209806005525289313, 185661218973084382181156348510614065, 9703072851259276652446200332793680010752000, 2932144456272256572796083896528773941130429279461761
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Main diagonal of A220644.
Row sums of A243424. - Alois P. Heinz, Jun 04 2014
Number of matchings (i.e., Hosoya index) in the n X n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..8..6..4....0..9..7....6..4..0....0..6..4....9..0..8....6..4..0....8..0..0
..2..7..0....9..3..1....8..6..4....6..4..7....0..1..2....0..0..8....2..6..4
..3..6..4....0..1..0....2..0..0....0..3..0....0..0..0....0..0..2....6..4..0
		

Crossrefs

Cf. A239273 (perfect matchings), A063443 (independent vertex sets), A234622 (cycles).

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od; b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k b(n, [true$(n*2)]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join [l[[d+1 ;; 2d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; b[n, ReplacePart[l, k -> f]] + If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, k | k + d + 1 -> f]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, k | k + d - 1 -> f]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, k | k + d -> f]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, k | k + 1 -> f]], 0]]]; a[n_] := b[n, Array[True&, 2n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)

Extensions

a(10)-a(12) from Alois P. Heinz, Jun 03 2014

A220639 Number of ways to reciprocally link elements of an n X 3 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 3, 40, 369, 3755, 37320, 373177, 3725843, 37213728, 371654153, 3711809483, 37070598992, 370232236753, 3697589375491, 36928628181272, 368814220524417, 3683427651446923, 36787191180049816, 367401660507886793, 3669320102980547411, 36646296045314442000
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Column 3 of A220644.

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4....0..0..0....6..4..0....8..9..0....8..9..0....8..0..0....6..4..0
..9..0..8....9..0..0....8..6..4....2..9..1....2..0..1....2..0..0....0..0..0
..0..1..2....0..1..0....2..6..4....0..0..1....6..4..0....0..6..4....6..4..0
		

Programs

  • Maple
    gf:= -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    LinearRecurrence[{8,22,-20,-16,10,-3},{3,40,369,3755,37320,373177},30] (* Harvey P. Dale, Nov 17 2013 *)

Formula

Empirical: a(n) = 8*a(n-1) +22*a(n-2) -20*a(n-3) -16*a(n-4) +10*a(n-5) -3*a(n-6).
G.f.: -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)). - Alois P. Heinz, Jun 03 2014

A220640 Number of ways to reciprocally link elements of an n X 4 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 5, 172, 3755, 92801, 2226936, 53841725, 1299348473, 31371388772, 757341382671, 18283618480037, 441397115736816, 10656083384666537, 257256013409077661, 6210599281867691164, 149934463555725516099, 3619673802389322978937, 87385102146053809399912
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Column 4 of A220644.

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..9..9..0..0....0..0..0..8....8..6..4..0....6..4..8..0....8..0..0..7
..8..1..1..0....9..7..0..2....2..0..8..8....0..0..2..0....2..8..3..0
..2..6..4..0....3..1..6..4....6..4..2..2....6..4..6..4....0..2..0..0
		

Programs

  • Maple
    gf:= -(3*x^7 -x^6 +14*x^5 -58*x^4 -70*x^3 +42*x^2 +15*x-1) / (15*x^9 -2*x^8 +48*x^7 -245*x^6 -460*x^5 +340*x^4 +325*x^3 -114*x^2 -20*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 03 2014

Formula

Empirical: a(n) = 20*a(n-1) +114*a(n-2) -325*a(n-3) -340*a(n-4) +460*a(n-5) +245*a(n-6) -48*a(n-7) +2*a(n-8) -15*a(n-9).
G.f.: -(3*x^7 -x^6 +14*x^5 -58*x^4 -70*x^3 +42*x^2 +15*x-1) / (15*x^9 -2*x^8 +48*x^7 -245*x^6 -460*x^5 +340*x^4 +325*x^3 -114*x^2 -20*x+1). - Alois P. Heinz, Jun 03 2014

A220641 Number of ways to reciprocally link elements of an n X 5 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 8, 728, 37320, 2226936, 128171936, 7444342896, 431408410784, 25014514225856, 1450226501771584, 84080327982982848, 4874715696405194752, 282621433306639435392, 16385536749696632356608, 949984033027704106955264, 55077209132605857634211328
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Column 5 of A220644.

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4..9..0....6..4..0..0..7....0..9..0..6..4....0..7..6..4..0
..6..4..0..8..1....0..7..7..3..0....0..7..1..0..0....3..9..0..9..0
..0..0..0..2..0....3..3..0..0..0....3..0..0..6..4....0..0..1..0..1
		

Programs

  • Maple
    gf:= -(4096*x^15 -4096*x^14 +31232*x^13 +42240*x^12 +242304*x^11 -32896*x^10 -801152*x^9 -74640*x^8 +473568*x^7 -18040*x^6 -86144*x^5 +11752*x^4 +3056*x^3 -350*x^2 -40*x+1) / (32768*x^17 -16384*x^16 +192512*x^15 +237568*x^14 +1681408*x^13 -640000*x^12 -7223680*x^11 -38400*x^10 +6932672*x^9 +175600*x^8 -2270720*x^7 +127448*x^6 +254384*x^5 -31552*x^4 -6232*x^3 +694*x^2 +48*x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 03 2014

Formula

Empirical: a(n) = 48*a(n-1) +694*a(n-2) -6232*a(n-3) -31552*a(n-4) +254384*a(n-5) +127448*a(n-6) -2270720*a(n-7) +175600*a(n-8) +6932672*a(n-9) -38400*a(n-10) -7223680*a(n-11) -640000*a(n-12) +1681408*a(n-13) +237568*a(n-14) +192512*a(n-15) -16384*a(n-16) +32768*a(n-17).
G.f.: see Maple program. - Alois P. Heinz, Jun 03 2014

A220642 Number of ways to reciprocally link elements of an n X 6 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 13, 3096, 373177, 53841725, 7444342896, 1040315976961, 145000880411157, 20223491612180232, 2820152941289640505, 393283923444213896309, 54844809649495130675968, 7648317475647716579501281, 1066586359952790876210231837, 148739462164292054050115639320
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Column 6 of A220644.

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..7..8..6..4..8....0..7..7..0..0..8....0..9..6..4..7..0....0..0..7..9..0..0
..3..9..2..0..0..2....3..3..0..6..4..2....8..9..1..3..0..8....0..3..0..0..1..8
..0..0..1..0..0..0....6..4..0..6..4..0....2..0..1..0..0..2....0..0..0..0..0..2
		

Programs

  • Maple
    gf:= -(42525*x^34 +364905*x^33 +4427406*x^32 -69988761*x^31 +75088869*x^30 +126251376*x^29 +1409947907*x^28 -3807220353*x^27 +31562787626*x^26 -34451027911*x^25 -29205077493*x^24 +161219121840*x^23 -514135270654*x^22 +487268729962*x^21 +681687943708*x^20 -1511580215802*x^19 +660828588610*x^18
    +669167562768*x^17 -1110589682746*x^16 +414093064814*x^15 +401344851300*x^14 -357570201838*x^13 -8972200506*x^12 +82109485328*x^11 -17558268975*x^10 -5482245411*x^9 +2504769654*x^8 -169204765*x^7 -66910711*x^6 +13483712*x^5 -491961*x^4 -56477*x^3 +2642*x^2 +101*x -1) / (552825*x^36 +4701240*x^35 +56415798*x^34 -921279564*x^33 +976631280*x^32 +2578302306*x^31
    +17639703466*x^30 -53576735032*x^29 +387967483426*x^28 -353889755932*x^27 -703880375232*x^26 +2343244613126*x^25 -6009171204129*x^24 +4558878158992*x^23 +11778527057052*x^22 -21799390094104*x^21 +5141934133696*x^20 +16202802907924*x^19 -18333779754964*x^18
    +2990479177712*x^17 +10475377691972*x^16 -7214129736088*x^15 -1546010691232*x^14 +2687705043916*x^13 -328038015993*x^12 -356958898120*x^11 +106454109710*x^10 +10363446884*x^9 -8116096176*x^8 +821286442*x^7 +130975946*x^6 -30456760*x^5 +1178554*x^4 +91572*x^3 -4256*x^2 -114*x +1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 03 2014

Formula

Empirical: a(n) = 114*a(n-1) +4256*a(n-2) -91572*a(n-3) -1178554*a(n-4) +30456760*a(n-5) -130975946*a(n-6) -821286442*a(n-7) +8116096176*a(n-8) -10363446884*a(n-9) -106454109710*a(n-10) +356958898120*a(n-11) +328038015993*a(n-12) -2687705043916*a(n-13) +1546010691232*a(n-14) +7214129736088*a(n-15) -10475377691972*a(n-16) -2990479177712*a(n-17) +18333779754964*a(n-18) -16202802907924*a(n-19) -5141934133696*a(n-20) +21799390094104*a(n-21) -11778527057052*a(n-22) -4558878158992*a(n-23) +6009171204129*a(n-24) -2343244613126*a(n-25) +703880375232*a(n-26) +353889755932*a(n-27) -387967483426*a(n-28) +53576735032*a(n-29) -17639703466*a(n-30) -2578302306*a(n-31) -976631280*a(n-32) +921279564*a(n-33) -56415798*a(n-34) -4701240*a(n-35) -552825*a(n-36).
G.f.: see Maple program. - Alois P. Heinz, Jun 03 2014

A220643 Number of ways to reciprocally link elements of an n X 7 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 21, 13152, 3725843, 1299348473, 431408410784, 145000880411157, 48590896359378961, 16295162098717276928, 5463664833842177843423, 1832013557267266441097285, 614283122531442244792501056, 205972692517470174457341794041, 69063792561944299889152684046621
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..0..0..0..0..7..0....0..0..9..6..4..0..0....0..6..4..0..0..7..0
..6..4..7..9..3..8..0....6..4..9..1..0..7..0....6..4..8..9..3..6..4
..0..3..0..0..1..2..0....0..0..0..1..3..6..4....0..0..2..0..1..0..0
		

Crossrefs

Column 7 of A220644.

A243314 Number of ways to reciprocally link elements of an n X 8 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 34, 55888, 37213728, 31371388772, 25014514225856, 20223491612180232, 16295162098717276928, 13140746227808545282304, 10594819370472223969569120, 8542571199105608333942735840, 6887766005343647823407800357376, 5553534245505786602829188504607680
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2014

Keywords

Crossrefs

Column k=8 of A220644.

A243315 Number of ways to reciprocally link elements of an n X 9 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 55, 237472, 371654153, 757341382671, 1450226501771584, 2820152941289640505, 5463664833842177843423, 10594819370472223969569120, 20540255065209806005525289313, 39823725482559144291828665014967, 77209746313875957204633819730760448
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2014

Keywords

Crossrefs

Column k=9 of A220644.

A243316 Number of ways to reciprocally link elements of an n X 10 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 89, 1009056, 3711809483, 18283618480037, 84080327982982848, 393283923444213896309, 1832013557267266441097285, 8542571199105608333942735840, 39823725482559144291828665014967, 185661218973084382181156348510614065, 865553976307450198923428125167024054656
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2014

Keywords

Crossrefs

Column k=10 of A220644.
Showing 1-10 of 10 results.