cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 44, 56, 18, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 40, 686, 6632, 39979, 157000, 407620, 695848, 762180, 510752, 192672, 35104, 2180, 1, 60, 1622, 26172, 281514, 2135356, 11785382, 48145820, 146702793, 333518324, 562203148
Offset: 0

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Also, coefficients of the matching-generating polynomial of the n X n grid graph.
In the n-th row there are floor(n^2/2)+1 values.

Examples

			Triangle starts:
  1
  1
  1  4   2
  1 12  44   56    18
  1 24 224 1044  2593   3388   2150    552     36
  1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(`if`(n>1,
             x*b(n, subsop(k=2, l)), 0) +`if`(k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..8); # Alois P. Heinz, Jun 01 2014
  • Mathematica
    b[n_, l_List] := b[n, l] =  Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • Sage
    def T(n,k):
       G = Graph(graphs.Grid2dGraph(n,n))
       G.relabel()
       mu = G.matching_polynomial()
       return abs(mu[n^2-2*k])

Formula

T(n,1) = A046092(n-1), T(n,2) = A242856(n).
T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n).
sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n).
T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - Alois P. Heinz, Jun 01 2014
Showing 1-1 of 1 results.