A046741
Triangle read by rows giving number of arrangements of k dumbbells on 2 X n grid (n >= 0, k >= 0).
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114, 13, 1, 19, 137, 473, 815, 667, 223, 21, 1, 22, 191, 838, 1982, 2504, 1577, 424, 34, 1, 25, 254, 1356, 4115, 7191, 7018, 3538, 789, 55, 1, 28, 326, 2054, 7646, 17266, 23431
Offset: 0
T(3, 2)=11 because in the 2 X 3 grid with vertex set {O(0, 0), A(1, 0), B(2, 0), C(2, 1), D(1, 1), E(0, 1)} and edge set {OA, AB, ED, DC, UE, AD, BC} we have the following eleven 2-matchings: {OA, BC}, {OA, DC}, {OA, ED}, {AB, DC}, {AB, ED}, {AB, OE}, {BC, AD}, {BC, ED}, {BC, OA}, {BC, OE} and {DC, OE}. - _Emeric Deutsch_, Dec 25 2004
Triangle starts:
1;
1, 1;
1, 4, 2;
1, 7, 11, 3;
1, 10, 29, 26, 5;
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- D. G. Rogers, An application of renewal sequences to the dimer problem, pp. 142-153 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Donovan Young, The Number of Domino Matchings in the Game of Memory, J. Int. Seq., Vol. 21 (2018), Article 18.8.1.
- Donovan Young, Generating Functions for Domino Matchings in the 2 * k Game of Memory, arXiv:1905.13165 [math.CO], 2019. Also in J. Int. Seq., Vol. 22 (2019), Article 19.8.7.
-
a046741 n k = a046741_tabl !! n !! k
a046741_row n = a046741_tabl !! n
a046741_tabl = [[1], [1, 1], [1, 4, 2]] ++ f [1] [1, 1] [1, 4, 2] where
f us vs ws = ys : f vs ws ys where
ys = zipWith (+) (zipWith (+) (ws ++ [0]) ([0] ++ map (* 2) ws))
(zipWith (-) ([0] ++ vs ++ [0]) ([0, 0, 0] ++ us))
-- Reinhard Zumkeller, Jan 18 2014
-
F[0]:=1:F[1]:=1+t:F[2]:=1+4*t+2*t^2:for n from 3 to 10 do F[n]:=sort(expand((1+2*t)*F[n-1]+t*F[n-2]-t^3*F[n-3])) od: for n from 0 to 10 do seq(coeff(t*F[n],t^k),k=1..n+1) od;# yields sequence in triangular form - Emeric Deutsch
-
p[n_] := p[n] = (1 + 2t) p[n-1] + t*p[n-2] - t^3*p[n-3]; p[0] = 1; p[1] = 1+t; p[2] = 1 + 4t + 2t^2; Flatten[Table[CoefficientList[Series[p[n], {t, 0, n}], t], {n, 0, 10}]][[;; 62]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
CoefficientList[LinearRecurrence[{1 + 2 x, x, -x^3}, {1 + x, 1 + 4 x + 2 x^2, 1 + 7 x + 11 x^2 + 3 x^3}, {0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
CoefficientList[CoefficientList[Series[-(1 + x z) (-1 - x + x^2 z)/(1 - z - 2 x z - x z^2 + x^3 z^3), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
A002940
Arrays of dumbbells.
Original entry on oeis.org
1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Carlos Alirio Rico Acevedo and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 23-24.
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
-
a002940 n = a002940_list !! (n-1)
a002940_list = 1 : 4 : 11 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
(drop 5 a000045_list)
-- Reinhard Zumkeller, Jan 18 2014
-
m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
-
a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
-
my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
-
((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
A002889
Arrays of dumbbells.
Original entry on oeis.org
1, 10, 56, 234, 815, 2504, 7018, 18336, 45328, 107160, 244198, 539656, 1161987, 2446906, 5054440, 10266850, 20549117, 40595568, 79271188, 153190480, 293278496, 556737696, 1048772300, 1961855408, 3646420325, 6737649754
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (7,-17,11,19,-29,-3,21,-3,-7,1,1).
-
a002889 n = a002889_list !! (n-1)
a002889_list = 1 : 10 : 56 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a002889_list) a002889_list)
(drop 2 $ zipWith (+) (tail a002941_list) a002941_list)
-- Reinhard Zumkeller, Jan 18 2014
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^3/((1-x)^3*(1-x-x^2)^4) )); // G. C. Greubel, Jan 31 2019
-
CoefficientList[(1+x)^3/((1-x)^3*(1-x-x^2)^4) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
LinearRecurrence[{7,-17,11,19,-29,-3,21,-3,-7,1,1},{1,10,56,234,815,2504,7018,18336,45328,107160,244198},30] (* Harvey P. Dale, Jul 25 2021 *)
-
x='x+O('x^30); Vec((1+x)^3/((1-x)^3*(1-x-x^2)^4)) \\ Altug Alkan, Jul 31 2018
-
((1+x)^3/((1-x)^3*(1-x-x^2)^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
A062123
a(n) = (9n^2 + 9n + 4)/2.
Original entry on oeis.org
2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
-
List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
-
[2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
-
Table[2 +9*n*(1+n)/2, {n,0,50}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{3,-3,1},{2,11,29},50] (* Harvey P. Dale, Jan 12 2020 *)
-
for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
-
[2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
A055608
Arrays of dumbbells.
Original entry on oeis.org
1, 13, 92, 473, 1982, 7191, 23431, 70234, 196941, 522939, 1327002, 3240917, 7660538, 17602967, 39466363, 86593478, 186399956, 394478234, 822229746, 1690521204, 3433033150, 6893852746, 13702694284, 26982983126, 52680389239
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-31,44,4,-84,66,46,-74,-4,36,-4,-9,1,1).
-
a055608 n = a055608_list !! (n-1)
a055608_list = 1 : 13 : 92 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a055608_list) a055608_list)
(drop 2 $ zipWith (+) (tail a002889_list) a002889_list)
-- Reinhard Zumkeller, Jan 18 2014
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^4/((1-x)^4*(1-x-x^2)^5) )); // G. C. Greubel, Jan 31 2019
-
CoefficientList[Series[(1+x)^4/((1-x)^4*(1-x-x^2)^5), {x,0,30}], x] (* G. C. Greubel, Jan 31 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)^4/((1-x)^4*(1-x-x^2)^5)) \\ G. C. Greubel, Jan 31 2019
-
((1+x)^4/((1-x)^4*(1-x-x^2)^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
Original entry on oeis.org
13, 223, 1577, 7018, 23431, 64316, 153190, 327718, 644573, 1185025, 2061259, 3423422, 5467399, 8443318, 12664784, 18518842, 26476669, 37104995, 51078253, 69191458, 92373815, 121703056, 158420506, 203946878, 259898797, 328106053
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
-
List([0..40], n -> (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80); # G. C. Greubel, Jan 31 2019
-
[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80: n in [0..40]]; // G. C. Greubel, Jan 31 2019
-
Table[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{13,223,1577,7018,23431,64316,153190},30] (* Harvey P. Dale, Jun 07 2022 *)
-
vector(40, n, n--; (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80) \\ G. C. Greubel, Jan 31 2019
-
[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80 for n in range(40)] # G. C. Greubel, Jan 31 2019
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Original entry on oeis.org
3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
-
List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
-
[(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
-
Table[(6+19*n+18*n^2+9*n^3)/2, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{4,-6,4,-1},{3,26,94,234},40] (* Harvey P. Dale, Feb 20 2022 *)
-
vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
-
[(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
A001926
G.f.: (1+x)^2/[(1-x)^4(1-x-x^2)^3].
Original entry on oeis.org
1, 9, 46, 177, 571, 1632, 4270, 10446, 24244, 53942, 115954, 242240, 494087, 987503, 1939634, 3753007, 7167461, 13532608, 25293964, 46856332, 86110792, 157125052, 284866900, 513470464, 920659517, 1642844485, 2918680214, 5164483453, 9104522495, 15995633440
Offset: 0
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (7,-18,17,7,-24,9,9,-6,-1,1).
-
A001926:=-(1+z)**2/(z**2+z-1)**3/(z-1)**4; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
nn = 30; CoefficientList[Series[(1 + x)^2/((1 - x)^4 (1 - x - x^2)^3), {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
LinearRecurrence[{7,-18,17,7,-24,9,9,-6,-1,1},{1,9,46,177,571,1632,4270,10446,24244,53942},30] (* Harvey P. Dale, Apr 30 2022 *)
Original entry on oeis.org
5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
-
List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
-
[(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
-
LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5,{x,0,30}],x] (* Harvey P. Dale, Dec 21 2011 *)
Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
-
vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
-
[(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Original entry on oeis.org
8, 114, 667, 2504, 7191, 17266, 36482, 70050, 124882, 209834, 335949, 516700, 768233, 1109610, 1563052, 2154182, 2912268, 3870466, 5066063, 6540720, 8340715, 10517186, 13126374, 16229866, 19894838, 24194298, 29207329
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
-
List([0..40], n -> (320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5 )/40); # G. C. Greubel, Jan 31 2019
-
[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40: n in [0..40]]; // G. C. Greubel, Jan 31 2019
-
Table[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
-
vector(40, n, n--; (320+1114*n+1515*n^2+1125*n^3+405*n^4 + 81*n^5)/40) \\ G. C. Greubel, Jan 31 2019
-
[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40 for n in range(40)] # G. C. Greubel, Jan 31 2019
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Showing 1-10 of 11 results.
Comments