cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A046741 Triangle read by rows giving number of arrangements of k dumbbells on 2 X n grid (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114, 13, 1, 19, 137, 473, 815, 667, 223, 21, 1, 22, 191, 838, 1982, 2504, 1577, 424, 34, 1, 25, 254, 1356, 4115, 7191, 7018, 3538, 789, 55, 1, 28, 326, 2054, 7646, 17266, 23431
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) is the number of k-matchings in the ladder graph L_n = P_2 X P_n. - Emeric Deutsch, Dec 25 2004
In other words, triangle of number of monomer-dimer tilings on (2,n)-block with k dimers. If z marks the size of the block and t marks the dimers, then it is easy to see that the g.f. for indecomposable tilings, i.e., those that cannot be split vertically into smaller tilings, is g = (1+t)*z + t^2*z^2 + 2*t*z^2 + 2*t^2*z^3 + 2*t^3*z^4 + ... = (1+t)*z + t^2*z^2 + 2*t*z^2/(1-t*z); then the g.f. is 1/(1-g) = (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3) (see eq. (4) of the Grimson reference). From this the recurrence of the McQuistan & Lichtman reference follows at once. - Emeric Deutsch, Oct 16 2006

Examples

			T(3, 2)=11 because in the 2 X 3 grid with vertex set {O(0, 0), A(1, 0), B(2, 0), C(2, 1), D(1, 1), E(0, 1)} and edge set {OA, AB, ED, DC, UE, AD, BC} we have the following eleven 2-matchings: {OA, BC}, {OA, DC}, {OA, ED}, {AB, DC}, {AB, ED}, {AB, OE}, {BC, AD}, {BC, ED}, {BC, OA}, {BC, OE} and {DC, OE}. - _Emeric Deutsch_, Dec 25 2004
Triangle starts:
  1;
  1,  1;
  1,  4,  2;
  1,  7, 11,  3;
  1, 10, 29, 26,  5;
		

Crossrefs

Diagonals give A002940, A002941, A002889.
Row sums yield A030186. T(n,n) = Fibonacci(n+1) (A000045).

Programs

  • Haskell
    a046741 n k = a046741_tabl !! n !! k
    a046741_row n = a046741_tabl !! n
    a046741_tabl = [[1], [1, 1], [1, 4, 2]] ++ f [1] [1, 1] [1, 4, 2] where
       f us vs ws = ys : f vs ws ys where
         ys = zipWith (+) (zipWith (+) (ws ++ [0]) ([0] ++ map (* 2) ws))
                          (zipWith (-) ([0] ++ vs ++ [0]) ([0, 0, 0] ++ us))
    -- Reinhard Zumkeller, Jan 18 2014
  • Maple
    F[0]:=1:F[1]:=1+t:F[2]:=1+4*t+2*t^2:for n from 3 to 10 do F[n]:=sort(expand((1+2*t)*F[n-1]+t*F[n-2]-t^3*F[n-3])) od: for n from 0 to 10 do seq(coeff(t*F[n],t^k),k=1..n+1) od;# yields sequence in triangular form - Emeric Deutsch
  • Mathematica
    p[n_] := p[n] = (1 + 2t) p[n-1] + t*p[n-2] - t^3*p[n-3]; p[0] = 1; p[1] = 1+t; p[2] = 1 + 4t + 2t^2; Flatten[Table[CoefficientList[Series[p[n], {t, 0, n}], t], {n, 0, 10}]][[;; 62]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
    CoefficientList[LinearRecurrence[{1 + 2 x, x, -x^3}, {1 + x, 1 + 4 x + 2 x^2, 1 + 7 x + 11 x^2 + 3 x^3}, {0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[CoefficientList[Series[-(1 + x z) (-1 - x + x^2 z)/(1 - z - 2 x z - x z^2 + x^3 z^3), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

From Emeric Deutsch, Dec 25 2004: (Start)
The row generating polynomials P[n] satisfy P[n] = (1 + 2*t)*P[n-1] + t*P[n-2] - t^3*P[n-3] with P[0] = 1, P[1] = 1+t, P[2] = 1 + 4*t + 2*t^2.
G.f.: (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
Formula fixed by Reinhard Zumkeller, Jan 18 2014

A002940 Arrays of dumbbells.

Original entry on oeis.org

1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1

Views

Author

Keywords

Comments

Whitney transform of n. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)). - Paul Barry, Feb 16 2005
a(n-1) is the permanent of the n X n 0-1 matrix with 1 in (i,j) position iff (i=1 and j1). For example, with n=5, a(4) = per([[1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1]]) = 26. - David Callan, Jun 07 2006
a(n) is the internal path length of the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The internal path length of a tree is the sum of the levels of all of its internal (i.e. non-leaf) nodes. - Emeric Deutsch, Jun 15 2010
Partial Sums of A023610 - John Molokach, Jul 03 2013

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Haskell
    a002940 n = a002940_list !! (n-1)
    a002940_list = 1 : 4 : 11 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
       (drop 5 a000045_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023

Extensions

More terms from Henry Bottomley, Jun 02 2000

A002889 Arrays of dumbbells.

Original entry on oeis.org

1, 10, 56, 234, 815, 2504, 7018, 18336, 45328, 107160, 244198, 539656, 1161987, 2446906, 5054440, 10266850, 20549117, 40595568, 79271188, 153190480, 293278496, 556737696, 1048772300, 1961855408, 3646420325, 6737649754
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002889 n = a002889_list !! (n-1)
    a002889_list = 1 : 10 : 56 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002889_list) a002889_list)
       (drop 2 $ zipWith (+) (tail a002941_list) a002941_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^3/((1-x)^3*(1-x-x^2)^4) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^3/((1-x)^3*(1-x-x^2)^4) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{7,-17,11,19,-29,-3,21,-3,-7,1,1},{1,10,56,234,815,2504,7018,18336,45328,107160,244198},30] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^3/((1-x)^3*(1-x-x^2)^4)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^3/((1-x)^3*(1-x-x^2)^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A002941(n) + A002941(n-1).
G.f.: (1+x)^3/((1-x)^3*(1-x-x^2)^4).

Extensions

More terms from Henry Bottomley, Jun 02 2000

A062123 a(n) = (9n^2 + 9n + 4)/2.

Original entry on oeis.org

2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

Comments

Third column of A046741.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).

Crossrefs

Programs

  • GAP
    List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[2 +9*n*(1+n)/2, {n,0,50}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{3,-3,1},{2,11,29},50] (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (1+2*x)*(2+x)/(1-x)^3. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 9*n + a(n-1), with n>0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
E.g.f.: (4 +18*x +9*x^2)*exp(x)/2. - G. C. Greubel, Jan 31 2019

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A055608 Arrays of dumbbells.

Original entry on oeis.org

1, 13, 92, 473, 1982, 7191, 23431, 70234, 196941, 522939, 1327002, 3240917, 7660538, 17602967, 39466363, 86593478, 186399956, 394478234, 822229746, 1690521204, 3433033150, 6893852746, 13702694284, 26982983126, 52680389239
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.

Crossrefs

Programs

  • Haskell
    a055608 n = a055608_list !! (n-1)
    a055608_list = 1 : 13 : 92 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a055608_list) a055608_list)
       (drop 2 $ zipWith (+) (tail a002889_list) a002889_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^4/((1-x)^4*(1-x-x^2)^5) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^4/((1-x)^4*(1-x-x^2)^5), {x,0,30}], x] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)^4/((1-x)^4*(1-x-x^2)^5)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)^4/((1-x)^4*(1-x-x^2)^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

G.f.: (1+x)^4/((1-x)^4*(1-x-x^2)^5).
a(n) = 2*a(n-1) - a(n-3) + A002889(n) + A002889(n-1).

A062127 Seventh column of A046741.

Original entry on oeis.org

13, 223, 1577, 7018, 23431, 64316, 153190, 327718, 644573, 1185025, 2061259, 3423422, 5467399, 8443318, 12664784, 18518842, 26476669, 37104995, 51078253, 69191458, 92373815, 121703056, 158420506, 203946878, 259898797, 328106053
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80); # G. C. Greubel, Jan 31 2019
  • Magma
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{13,223,1577,7018,23431,64316,153190},30] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    vector(40, n, n--; (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (2*x^6 + 14*x^5 + 72*x^4 + 207*x^3 + 289*x^2 + 132*x + 13)/(1-x)^7. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (81*n^6 + 567*n^5 + 2205*n^4 + 4545*n^3 + 5674*n^2 + 3728*n + 1040)/80.
E.g.f.: (1040 + 16800*x + 45760*x^2 + 39240*x^3 + 13140*x^4 + 1782*x^5 + 81*x^6)*exp(x)/80. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062124 Fourth column of A046741.

Original entry on oeis.org

3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(6+19*n+18*n^2+9*n^3)/2, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{4,-6,4,-1},{3,26,94,234},40] (* Harvey P. Dale, Feb 20 2022 *)
  • PARI
    vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A001926 G.f.: (1+x)^2/[(1-x)^4(1-x-x^2)^3].

Original entry on oeis.org

1, 9, 46, 177, 571, 1632, 4270, 10446, 24244, 53942, 115954, 242240, 494087, 987503, 1939634, 3753007, 7167461, 13532608, 25293964, 46856332, 86110792, 157125052, 284866900, 513470464, 920659517, 1642844485, 2918680214, 5164483453, 9104522495, 15995633440
Offset: 0

Views

Author

Keywords

Comments

From rook polynomials.

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second differences are in A002941.

Programs

  • Maple
    A001926:=-(1+z)**2/(z**2+z-1)**3/(z-1)**4; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    nn = 30; CoefficientList[Series[(1 + x)^2/((1 - x)^4 (1 - x - x^2)^3), {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    LinearRecurrence[{7,-18,17,7,-24,9,9,-6,-1,1},{1,9,46,177,571,1632,4270,10446,24244,53942},30] (* Harvey P. Dale, Apr 30 2022 *)

Extensions

Edited by N. J. A. Sloane, Apr 10 2009

A062125 Fifth column of A046741.

Original entry on oeis.org

5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
  • Magma
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5,{x,0,30}],x] (* Harvey P. Dale, Dec 21 2011 *)
    Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (5 + 33*x^2 + 10*x^3 + 31*x + 2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), where a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982. - Harvey P. Dale, Dec 21 2011
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (40 + 126*n + 165*n^2 + 90*n^3 + 27*n^4)/8.
E.g.f.: (40 + 408*x + 624*x^2 + 252*x^3 + 27*x^4)*exp(x)/8. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062126 Sixth column of A046741.

Original entry on oeis.org

8, 114, 667, 2504, 7191, 17266, 36482, 70050, 124882, 209834, 335949, 516700, 768233, 1109610, 1563052, 2154182, 2912268, 3870466, 5066063, 6540720, 8340715, 10517186, 13126374, 16229866, 19894838, 24194298, 29207329
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5 )/40); # G. C. Greubel, Jan 31 2019
  • Magma
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (320+1114*n+1515*n^2+1125*n^3+405*n^4 + 81*n^5)/40) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (x+2)*(2*x^4 + 8*x^3 + 36*x^2 + 31*x + 4)/(1-x)^6. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1 - y - y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (320 + 1114*n + 1515*n^2 + 1125*n^3 + 405*n^4 + 81*n^5)/40.
E.g.f.: (320 + 4240*x + 8940*x^2 + 5580*x^3 + 1215*x^4 + 81*x^5)*exp(x)/40. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Showing 1-10 of 11 results. Next