cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259454 Triangle T(n,k) (0 <= k <= n) read by rows, arising from the study of rook polynomials.

Original entry on oeis.org

1, 1, 3, 1, 6, 7, 1, 9, 22, 14, 1, 12, 46, 64, 26, 1, 15, 79, 177, 162, 46, 1, 18, 121, 380, 571, 374, 79, 1, 21, 172, 700, 1496, 1632, 809, 133, 1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221, 1, 27, 301, 1799, 6271, 13013, 15754, 10446, 3316, 364
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2015

Keywords

Comments

See Riordan 1954 page 18 equation (9). - Michael Somos, Aug 26 2015

Examples

			Triangle T(n,k) begins:
1;
1,  3;
1,  6,  7;
1,  9,  22,   14;
1, 12,  46,   64,   26;
1, 15,  79,  177,  162,   46;
1, 18, 121,  380,  571,  374,   79;
1, 21, 172,  700, 1496, 1632,  809,  133;
1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221;
G.f. = 1 + (1 + 3*t)*u + (1 + 6*t + 7*t^2)*u^2 + ...
		

Crossrefs

Some diagonals: A001924, A001925, A001926.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          T(n-1, k) +2*T(n-1, k-1) +T(n-2, k-1)
         -T(n-3, k-3) +`if`(n=k, 1, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jul 02 2015
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k] + 2*T[n-1, k-1] + T[n-2, k - 1] - T[n-3, k-3] + Boole[n == k]; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2016 *)
  • PARI
    {T(n, k) = polcoeff( polcoeff( 1 / ((1 - y*x) * (1 - (1 + 2*y)*x - y*x^2 + y^3*x^3)) + x * O(x^n), n), k)}; /* Michael Somos, Aug 26 2015 */

Formula

From Eq. (11) of Riordan (1954): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3) + delta(n,k), where delta(n,k)=1 iff n=k, otherwise 0.
Sum_{n, k} T(n, k) * x^n*y^k = 1 / ((1 - y*x) * (1 - (1 + 2*y)*x - y*x^2 + y^3*x^3)). - Michael Somos, Aug 26 2015

Extensions

More terms from Alois P. Heinz, Jul 02 2015
Showing 1-1 of 1 results.