cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002940 Arrays of dumbbells.

Original entry on oeis.org

1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1

Views

Author

Keywords

Comments

Whitney transform of n. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)). - Paul Barry, Feb 16 2005
a(n-1) is the permanent of the n X n 0-1 matrix with 1 in (i,j) position iff (i=1 and j1). For example, with n=5, a(4) = per([[1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1]]) = 26. - David Callan, Jun 07 2006
a(n) is the internal path length of the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The internal path length of a tree is the sum of the levels of all of its internal (i.e. non-leaf) nodes. - Emeric Deutsch, Jun 15 2010
Partial Sums of A023610 - John Molokach, Jul 03 2013

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Haskell
    a002940 n = a002940_list !! (n-1)
    a002940_list = 1 : 4 : 11 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
       (drop 5 a000045_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023

Extensions

More terms from Henry Bottomley, Jun 02 2000

A202970 Symmetric matrix based on A001911, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 6, 10, 6, 11, 21, 21, 11, 19, 39, 46, 39, 19, 32, 68, 87, 87, 68, 32, 53, 115, 153, 167, 153, 115, 53, 87, 191, 260, 296, 296, 260, 191, 87, 142, 314, 433, 505, 528, 505, 433, 314, 142, 231, 513, 713, 843, 904, 904, 843, 713, 513, 231, 375, 835
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A001911 (F(n+3)-2, where F(n)=A000045(n), the Fibonacci numbers), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202970 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202971 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1...3...6....11...19
3...10..21...39...68
6...21..46...87...153
11..39..87...167..296
19..68..153..296..528
		

Crossrefs

Programs

  • Mathematica
    s[k_] := -2 + Fibonacci[k + 3];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001891 *)
    Table[m[1, j], {j, 1, 12}]     (* A001911 *)
    Table[m[j, j], {j, 1, 12}]
    Table[m[j, j + 1], {j, 1, 12}]
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A001925 *)

A259454 Triangle T(n,k) (0 <= k <= n) read by rows, arising from the study of rook polynomials.

Original entry on oeis.org

1, 1, 3, 1, 6, 7, 1, 9, 22, 14, 1, 12, 46, 64, 26, 1, 15, 79, 177, 162, 46, 1, 18, 121, 380, 571, 374, 79, 1, 21, 172, 700, 1496, 1632, 809, 133, 1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221, 1, 27, 301, 1799, 6271, 13013, 15754, 10446, 3316, 364
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2015

Keywords

Comments

See Riordan 1954 page 18 equation (9). - Michael Somos, Aug 26 2015

Examples

			Triangle T(n,k) begins:
1;
1,  3;
1,  6,  7;
1,  9,  22,   14;
1, 12,  46,   64,   26;
1, 15,  79,  177,  162,   46;
1, 18, 121,  380,  571,  374,   79;
1, 21, 172,  700, 1496, 1632,  809,  133;
1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221;
G.f. = 1 + (1 + 3*t)*u + (1 + 6*t + 7*t^2)*u^2 + ...
		

Crossrefs

Some diagonals: A001924, A001925, A001926.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          T(n-1, k) +2*T(n-1, k-1) +T(n-2, k-1)
         -T(n-3, k-3) +`if`(n=k, 1, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jul 02 2015
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k] + 2*T[n-1, k-1] + T[n-2, k - 1] - T[n-3, k-3] + Boole[n == k]; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2016 *)
  • PARI
    {T(n, k) = polcoeff( polcoeff( 1 / ((1 - y*x) * (1 - (1 + 2*y)*x - y*x^2 + y^3*x^3)) + x * O(x^n), n), k)}; /* Michael Somos, Aug 26 2015 */

Formula

From Eq. (11) of Riordan (1954): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3) + delta(n,k), where delta(n,k)=1 iff n=k, otherwise 0.
Sum_{n, k} T(n, k) * x^n*y^k = 1 / ((1 - y*x) * (1 - (1 + 2*y)*x - y*x^2 + y^3*x^3)). - Michael Somos, Aug 26 2015

Extensions

More terms from Alois P. Heinz, Jul 02 2015
Showing 1-3 of 3 results.