A091698 Matrix inverse of triangle A063967.
1, -1, 1, 1, -3, 1, -1, 8, -5, 1, 1, -23, 19, -7, 1, -1, 74, -69, 34, -9, 1, 1, -262, 256, -147, 53, -11, 1, -1, 993, -986, 615, -265, 76, -13, 1, 1, -3943, 3935, -2571, 1235, -431, 103, -15, 1, -1, 16178, -16169, 10862, -5591, 2216, -653, 134, -17, 1, 1
Offset: 0
Examples
From _Paul Barry_, Apr 15 2010: (Start) Triangle begins 1, -1, 1, 1, -3, 1, -1, 8, -5, 1, 1, -23, 19, -7, 1, -1, 74, -69, 34, -9, 1, 1, -262, 256, -147, 53, -11, 1, -1, 993, -986, 615, -265, 76, -13, 1, 1, -3943, 3935, -2571, 1235, -431, 103, -15, 1 Production matrix begins -1, 1, 0, -2, 1, 0, 1, -2, 1, 0, -1, 1, -2, 1, 0, 1, -1, 1, -2, 1, 0, -1, 1, -1, 1, -2, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, -1, 1, -1, 1, -1, 1, -2, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1 (End)
Links
- Lara K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, arXiv preprint arXiv:1408.6823 [math.CO], 2014.
Programs
-
Mathematica
rows = 11; t[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; T = Table[t[n, k], {n, 0, rows - 1}, {k, 0, rows - 1}] // Inverse; Table[ T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 11 2017 *)
Comments