A073387
Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0
Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
1;
2, 1;
6, 4, 1;
16, 16, 6, 1;
44, 56, 30, 8, 1;
120, 188, 128, 48, 10, 1;
328, 608, 504, 240, 70, 12, 1;
896, 1920, 1872, 1080, 400, 96, 14, 1;
-
A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
[A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
-
T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
-
T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
-
def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022
A073388
Convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024
Offset: 0
Second (m=1) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+1,1)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^2 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^2, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
taylor( 1/(1-2*x-2*x^2)^2, x, 0, 24).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
A073389
Second convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 6, 30, 128, 504, 1872, 6672, 23040, 77616, 256288, 832416, 2666496, 8441600, 26454528, 82174464, 253280256, 775316736, 2358812160, 7137023488, 21487386624, 64401106944, 192229535744, 571630694400, 1693996941312, 5004131659776, 14738997288960, 43293528760320
Offset: 0
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+2,2)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^3 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2x(1+x))^3,{x,0,25}],x] (* Harvey P. Dale, Mar 14 2011 *)
-
taylor( 1/(1-2*x-2*x^2)^3, x, 0, 25).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
A073405
Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n >= 0, (generalized (2,2)-Fibonacci). Companion triangle is A073406.
Original entry on oeis.org
1, 36, 12, 1536, 888, 120, 80448, 62592, 15168, 1152, 5068800, 4813056, 1600704, 222336, 10944, 375598080, 413351424, 169917696, 32811264, 2992896, 103680, 32103751680, 39661608960, 19066503168, 4592982528
Offset: 0
k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
Triangle begins:
1;
36, 12;
1536, 888, 120;
... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073403
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073404.
Original entry on oeis.org
1, 12, 36, 120, 888, 1536, 1152, 15168, 62592, 80448, 10944, 222336, 1600704, 4813056, 5068800, 103680, 2992896, 32811264, 169917696, 413351424, 375598080, 981504, 38112768, 587976192, 4592982528
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 120,888,1536; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073390
Third convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 8, 48, 240, 1080, 4512, 17856, 67776, 248880, 889600, 3109376, 10664448, 35989248, 119761920, 393676800, 1280157696, 4122985728, 13165099008, 41713192960, 131243970560, 410315433984, 1275348344832
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,-16,-16,56,32,-64,-64,-16).
Fourth (m=3) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+3,3)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^4 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^4, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
def A073390_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^4 ).list()
A073390_list(40) # G. C. Greubel, Oct 03 2022
A073391
Fourth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 10, 70, 400, 2020, 9352, 40600, 167680, 665440, 2555840, 9551936, 34880000, 124853120, 439228160, 1521839360, 5202292736, 17571249920, 58712184320, 194280061440, 637228462080, 2073332481024, 6696470231040
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,-30,0,120,-48,-240,0,240,160,32).
Fifth (m=4) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+4,4)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^5 )); // G. C. Greubel, Oct 04 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^5, {x,0,40}], x] (* G. C. Greubel, Oct 04 2022 *)
-
def A073391_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^5 ).list()
A073391_list(40) # G. C. Greubel, Oct 04 2022
A073392
Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 12, 96, 616, 3444, 17472, 82432, 367488, 1565280, 6421376, 25525248, 98773248, 373450112, 1383674880, 5036089344, 18041821184, 63727070976, 222249968640, 766234140672, 2614196680704, 8834194123776
Offset: 0
x^6 + 12*x^7 + 96*x^8 + 616*x^9 + 3444*x^10 + ... + 222249968640*x^23 + 766234140672*x^24 + 2614196680704*x^25 + 8834194123776*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (12,-48,40,180,-288,-384,576,720,-320,-768,-384,-64).
Sixth (m=5) column of triangle
A073387.
-
List([0..30], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+5,5)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^6 )); // G. C. Greubel, Oct 04 2022
-
CoefficientList[Series[1/(1-2*x*(1+x))^6, {x,0,30}],x] (* Harvey P. Dale, May 12 2018 *)
-
taylor( 1/(1-2*x-2*x^2)^6, x, 0, 30).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 04 2022
A073393
Sixth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 14, 126, 896, 5488, 30240, 153888, 735744, 3344544, 14581952, 61378240, 250693632, 997593856, 3880249856, 14791776768, 55385874432, 204082373376, 741186464256, 2656771815936, 9410113241088
Offset: 0
x^7 + 14*x^8 + 126*x^9 + 896*x^10 + 5488*x^11 + ... + 204082373376*x^23 + 741186464256*x^24 + 2656771815936*x^25 + 9410113241088*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-70,112,196,-728,-168,1920,336,-2912,-1568, 1792,2240,896,128).
Seventh (m=6) column of triangle
A073387.
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^7 )); // G. C. Greubel, Oct 05 2022
-
CoefficientList[Series[1/(1-2x(1+x))^7,{x,0,30}],x] (* or *)
LinearRecurrence[{14,-70,112,196,-728,-168,1920,336,-2912,-1568,1792,2240,896,128},{1,14,126,896,5488,30240,153888,735744,3344544,14581952,61378240,250693632, 997593856,3880249856},30](* Harvey P. Dale, Jan 24 2013 *)
-
taylor( 1/(1-2*x-2*x^2)^7, x, 0, 26).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 05 2022
A073394
Seventh convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 16, 160, 1248, 8304, 49344, 269184, 1372800, 6628512, 30584576, 135804416, 583471616, 2436145920, 9919484928, 39503038464, 154230921216, 591550292736, 2232748892160, 8305370185728, 30486351396864, 110551407403008, 396424924397568, 1406924861276160, 4945692873129984, 17231635316293632
Offset: 0
G.f. = 1 + 16*x + 160*x^2 + 1248*x^3 + ... + 154230921216*x^15 + 591550292736*x^16 + 2232748892160*x^17 + 8305370185728*x^18 + ... - _Zerinvary Lajos_, Jun 03 2009
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-96,224,112,-1344,896,3712,-3168,-7424,3584,10752,1792,-7168,-6144,-2048,-256).
Eighth (m=7) column of triangle
A073387.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^8 )); // G. C. Greubel, Oct 06 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^8, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
LinearRecurrence[{16,-96,224,112,-1344,896,3712,-3168,-7424,3584,10752,1792,-7168,-6144,-2048,-256},{1,16,160,1248,8304,49344,269184,1372800,6628512,30584576,135804416,583471616,2436145920,9919484928,39503038464,154230921216},30] (* Harvey P. Dale, Nov 21 2023 *)
-
taylor( 1/(1-2*x-2*x^2)^8, x, 0, 26).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 06 2022
Showing 1-10 of 135 results.
Comments