A073406
Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073405.
Original entry on oeis.org
2, 36, 12, 1056, 672, 96, 43968, 40416, 10752, 864, 2396160, 2815488, 1051776, 156672, 8064, 161879040, 226492416, 105981696, 22125312, 2121984, 76032, 13044326400, 20766633984, 11446769664, 2995605504
Offset: 0
k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
2; 36,12; 1056,672,96; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073403
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073404.
Original entry on oeis.org
1, 12, 36, 120, 888, 1536, 1152, 15168, 62592, 80448, 10944, 222336, 1600704, 4813056, 5068800, 103680, 2992896, 32811264, 169917696, 413351424, 375598080, 981504, 38112768, 587976192, 4592982528
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 120,888,1536; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073397
Eighth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 18, 198, 1680, 12060, 76824, 446952, 2420352, 12363120, 60151520, 280833696, 1265442048, 5528697408, 23507763840, 97575960960, 396398370816, 1579498956288, 6184543546368, 23833455191040, 90522348871680, 339263015528448, 1255995653197824, 4597442198728704
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18,-126,384,-144,-2016,3360,4608,-12384,-8512, 24768,18432,-26880,-32256,4608,24576,16128,4608,512).
Ninth (m=8) column of triangle
A073387.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^9 )); // G. C. Greubel, Oct 06 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^9, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
-
def A073397_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^9 ).list()
A073397_list(30) # G. C. Greubel, Oct 06 2022
A073398
Ninth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 20, 240, 2200, 16940, 115104, 711040, 4072640, 21930480, 112157760, 549010176, 2587777920, 11802273600, 52287866880, 225756241920, 952486588416, 3935984616960, 15961485957120, 63628396339200, 249702113464320, 965924035135488, 3687247950397440
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (20,-160,600,-660,-2496,7680,1920,-28320,7040, 66560,-14080,-113280,-15360,122880,79872,-42240,-76800,-40960,-10240,-1024).
Tenth (m=9) column of triangle
A073387.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^10 )); // G. C. Greubel, Oct 06 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^10, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
-
def A073398_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^10 ).list()
A073398_list(30) # G. C. Greubel, Oct 06 2022
A073404
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073403.
Original entry on oeis.org
2, 12, 36, 96, 672, 1056, 864, 10752, 40416, 43968, 8064, 156672, 1051776, 2815488, 2396160, 76032, 2121984, 22125312, 105981696, 226492416, 161879040, 718848, 27205632, 404656128, 2995605504
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 96,672,1056; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
Showing 1-5 of 5 results.
Comments