A073403
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073404.
Original entry on oeis.org
1, 12, 36, 120, 888, 1536, 1152, 15168, 62592, 80448, 10944, 222336, 1600704, 4813056, 5068800, 103680, 2992896, 32811264, 169917696, 413351424, 375598080, 981504, 38112768, 587976192, 4592982528
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 120,888,1536; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073387
Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0
Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
1;
2, 1;
6, 4, 1;
16, 16, 6, 1;
44, 56, 30, 8, 1;
120, 188, 128, 48, 10, 1;
328, 608, 504, 240, 70, 12, 1;
896, 1920, 1872, 1080, 400, 96, 14, 1;
-
A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
[A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
-
T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
-
T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
-
def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022
Showing 1-2 of 2 results.
Comments