A002605
a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 8, 29.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- M. Diepenbroek, M. Maus, and A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Dale Gerdemann Bird Flock, Youtube video, 2011.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 476
- D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (39), (41) and (45), lhs, m=2.
- D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See U_n.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Alan Prince, Counting parses, Rutgers Optimality Archive, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for Lucas sequences.
First differences are given by
A026150.
a(n) =
A073387(n, 0), n>=0 (first column of triangle).
a(n) =
A028860(n)/2 apart from the initial terms.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
Cf.
A080953,
A052948,
A080040,
A028859,
A030195,
A106435,
A108898,
A125145,
A265106,
A265107,
A265278,
A270810,
A293005,
A293006,
A293007.
-
a002605 n = a002605_list !! n
a002605_list =
0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list))
-- Reinhard Zumkeller, Oct 15 2011
-
[Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
[n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008
a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2));
seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
-
Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *)
Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
nxt[{a_,b_}]:={b,2(a+b)}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
-
Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
-
A002605(n)=([2,2;1,0]^n)[2,1] \\ M. F. Hasler, Aug 06 2018
-
[lucas_number1(n,2,-2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
-
a = BinaryRecurrenceSequence(2,2)
print([a(n) for n in (0..29)]) # Peter Luschny, Aug 29 2016
A007482
a(n) is the number of subsequences of [ 1, ..., 2n ] in which each odd number has an even neighbor.
Original entry on oeis.org
1, 3, 11, 39, 139, 495, 1763, 6279, 22363, 79647, 283667, 1010295, 3598219, 12815247, 45642179, 162557031, 578955451, 2061980415, 7343852147, 26155517271, 93154256107, 331773802863, 1181629920803, 4208437368135
Offset: 0
G.f. = 1 + 3*x + 11*x^2 + 39*x^3 + 139*x^4 + 495*x^5 + 1763*x^6 + ...
From _M. F. Hasler_, Jun 16 2019: (Start)
For n = 0, (1, ..., 2n) = () is the empty sequence, which is equal to its only subsequence, which satisfies the condition voidly, whence a(0) = 1.
For n = 1, (1, ..., 2n) = (1, 2); among the four subsequences {(), (1), (2), (1,2)} only (1) does not satisfy the condition, whence a(1) = 3.
For n = 2, (1, ..., 2n) = (1, 2, 3, 4); among the sixteen subsequences {(), ..., (1,2,3,4)}, the 5 subsequences (1), (3), (1,3), (2,3,4) and (1,2,3,4) do not satisfy the condition, whence a(2) = 16 - 5 = 11.
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 439.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 13, 29.
- Alexander Burstein and Opel Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, arXiv:2002.12189 [math.CO], 2020.
- R. K. Guy and William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996). Math. Rev. 97d:11017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 442
- Peter Karpov, InvMem, Item 26
- Peter Karpov, Illustration of initial terms (n = 1..8)
- Yuriy Sibirmovsky, A fractal with number of elements described by a(n)
- Index entries for linear recurrences with constant coefficients, signature (3,2).
Cf.
A000045,
A000129,
A001045,
A007455,
A007481,
A007483,
A007484,
A015518,
A201000 (prime subsequence),
A052913 (binomial transform),
A026597 (inverse binomial transform).
-
a007482 n = a007482_list !! (n-1)
a007482_list = 1 : 3 : zipWith (+)
(map (* 3) $ tail a007482_list) (map (* 2) a007482_list)
-- Reinhard Zumkeller, Oct 21 2015
-
I:=[1,3]; [n le 2 select I[n] else 3*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
a := n -> `if`(n=0, 1, 3^n*hypergeom([(1-n)/2,-n/2], [-n], -8/9)):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Jun 28 2017
-
a[n_]:=(MatrixPower[{{1,4},{1,2}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{3,2},{1,3},30] (* Harvey P. Dale, May 25 2013 *)
a[ n_] := Module[ {m = n + 1, s = 1}, If[ m < 0, {m, s} = -{m, (-2)^m}]; s SeriesCoefficient[ x / (1 - 3 x - 2 x^2), {x, 0, m}]]; (* Michael Somos, Jun 03 2015 *)
a[ n_] := With[{m = n + 1}, If[ m < 0, (-2)^m a[ -m], Expand[((3 + Sqrt[17])/2)^m - ((3 - Sqrt[17])/2)^m ] / Sqrt[17]]]; (* Michael Somos, Oct 13 2016 *)
-
a(n) := if n=0 then 1 elseif n=1 then 3 else 3*a(n-1)+2*a(n-2);
makelist(a(n),n,0,12); /* Emanuele Munarini, Jun 28 2017 */
-
{a(n) = 2*imag(( (3 + quadgen(68)) / 2)^(n+1))}; /* Michael Somos, Jun 03 2015 */
-
[lucas_number1(n,3,-2) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
A073388
Convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024
Offset: 0
Second (m=1) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+1,1)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^2 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^2, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
taylor( 1/(1-2*x-2*x^2)^2, x, 0, 24).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
A073389
Second convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 6, 30, 128, 504, 1872, 6672, 23040, 77616, 256288, 832416, 2666496, 8441600, 26454528, 82174464, 253280256, 775316736, 2358812160, 7137023488, 21487386624, 64401106944, 192229535744, 571630694400, 1693996941312, 5004131659776, 14738997288960, 43293528760320
Offset: 0
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+2,2)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^3 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2x(1+x))^3,{x,0,25}],x] (* Harvey P. Dale, Mar 14 2011 *)
-
taylor( 1/(1-2*x-2*x^2)^3, x, 0, 25).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
A073405
Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n >= 0, (generalized (2,2)-Fibonacci). Companion triangle is A073406.
Original entry on oeis.org
1, 36, 12, 1536, 888, 120, 80448, 62592, 15168, 1152, 5068800, 4813056, 1600704, 222336, 10944, 375598080, 413351424, 169917696, 32811264, 2992896, 103680, 32103751680, 39661608960, 19066503168, 4592982528
Offset: 0
k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
Triangle begins:
1;
36, 12;
1536, 888, 120;
... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073403
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073404.
Original entry on oeis.org
1, 12, 36, 120, 888, 1536, 1152, 15168, 62592, 80448, 10944, 222336, 1600704, 4813056, 5068800, 103680, 2992896, 32811264, 169917696, 413351424, 375598080, 981504, 38112768, 587976192, 4592982528
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 120,888,1536; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073390
Third convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 8, 48, 240, 1080, 4512, 17856, 67776, 248880, 889600, 3109376, 10664448, 35989248, 119761920, 393676800, 1280157696, 4122985728, 13165099008, 41713192960, 131243970560, 410315433984, 1275348344832
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,-16,-16,56,32,-64,-64,-16).
Fourth (m=3) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+3,3)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^4 )); // G. C. Greubel, Oct 03 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^4, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
def A073390_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^4 ).list()
A073390_list(40) # G. C. Greubel, Oct 03 2022
A073391
Fourth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 10, 70, 400, 2020, 9352, 40600, 167680, 665440, 2555840, 9551936, 34880000, 124853120, 439228160, 1521839360, 5202292736, 17571249920, 58712184320, 194280061440, 637228462080, 2073332481024, 6696470231040
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,-30,0,120,-48,-240,0,240,160,32).
Fifth (m=4) column of triangle
A073387.
-
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+4,4)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^5 )); // G. C. Greubel, Oct 04 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^5, {x,0,40}], x] (* G. C. Greubel, Oct 04 2022 *)
-
def A073391_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^5 ).list()
A073391_list(40) # G. C. Greubel, Oct 04 2022
A073392
Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 12, 96, 616, 3444, 17472, 82432, 367488, 1565280, 6421376, 25525248, 98773248, 373450112, 1383674880, 5036089344, 18041821184, 63727070976, 222249968640, 766234140672, 2614196680704, 8834194123776
Offset: 0
x^6 + 12*x^7 + 96*x^8 + 616*x^9 + 3444*x^10 + ... + 222249968640*x^23 + 766234140672*x^24 + 2614196680704*x^25 + 8834194123776*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (12,-48,40,180,-288,-384,576,720,-320,-768,-384,-64).
Sixth (m=5) column of triangle
A073387.
-
List([0..30], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+5,5)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^6 )); // G. C. Greubel, Oct 04 2022
-
CoefficientList[Series[1/(1-2*x*(1+x))^6, {x,0,30}],x] (* Harvey P. Dale, May 12 2018 *)
-
taylor( 1/(1-2*x-2*x^2)^6, x, 0, 30).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 04 2022
A073393
Sixth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
Original entry on oeis.org
1, 14, 126, 896, 5488, 30240, 153888, 735744, 3344544, 14581952, 61378240, 250693632, 997593856, 3880249856, 14791776768, 55385874432, 204082373376, 741186464256, 2656771815936, 9410113241088
Offset: 0
x^7 + 14*x^8 + 126*x^9 + 896*x^10 + 5488*x^11 + ... + 204082373376*x^23 + 741186464256*x^24 + 2656771815936*x^25 + 9410113241088*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-70,112,196,-728,-168,1920,336,-2912,-1568, 1792,2240,896,128).
Seventh (m=6) column of triangle
A073387.
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^7 )); // G. C. Greubel, Oct 05 2022
-
CoefficientList[Series[1/(1-2x(1+x))^7,{x,0,30}],x] (* or *)
LinearRecurrence[{14,-70,112,196,-728,-168,1920,336,-2912,-1568,1792,2240,896,128},{1,14,126,896,5488,30240,153888,735744,3344544,14581952,61378240,250693632, 997593856,3880249856},30](* Harvey P. Dale, Jan 24 2013 *)
-
taylor( 1/(1-2*x-2*x^2)^7, x, 0, 26).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 05 2022
Showing 1-10 of 15 results.
Comments