cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A291385 a(n) = (1/4)*A073388(n+1).

Original entry on oeis.org

1, 4, 14, 47, 152, 480, 1488, 4548, 13744, 41152, 122272, 360944, 1059584, 3095552, 9005568, 26101824, 75404544, 217191424, 623928832, 1788071680, 5113137152, 14592352256, 41569120256, 118219097088, 335685021696, 951817715712, 2695241605120, 7622609858560
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^2; p = (1 - 2 s)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A073388 *)
    u / 2  (* A291385 *)
    LinearRecurrence[{4,0,-8,-4},{1,4,14,47},30] (* Harvey P. Dale, Aug 24 2022 *)

Formula

G.f.: -(((1 + x) (-1 + x + x^2))/(-1 + 2 x + 2 x^2)^2).
a(n) = 4*a(n-1) - 8*a(n-3) + 4*a(n-4) for n >= 5.
a(n) = Sum_{k=0..n+1} k * A155112(n+1,k). - Alois P. Heinz, Sep 29 2022

A291382 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.

Original entry on oeis.org

2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,0,0,0,...) = A019590, in some cases t(1,1,0,0,0,...) is a shifted version of the cited sequence:
p(S) t(1,1,0,0,0,...)
1 - S A000045 (Fibonacci numbers)
1 - S^2 A094686
1 - S^3 A115055
1 - S^4 A291379
1 - S^5 A281380
1 - S^6 A281381
1 - 2 S A002605
1 - 3 S A125145
(1 - S)^2 A001629
(1 - S)^3 A001628
(1 - S)^4 A001629
(1 - S)^5 A001873
(1 - S)^6 A001874
1 - S - S^2 A123392
1 - 2 S - S^2 A291382
1 - S - 2 S^2 A124861
1 - 2 S - S^2 A291383
(1 - 2 S)^2 A073388
(1 - 3 S)^2 A291387
(1 - 5 S)^2 A291389
(1 - 6 S)^2 A291391
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 3 S) A291394
(1 - 2 S)(1 - 3 S) A291395
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 2 S)(1 - 3 S) A291396
1 - S - S^3 A291397
1 - S^2 - S^3 A291398
1 - S - S^2 - S^3 A186812
1 - S - S^2 - S^3 - S^4 A291399
1 - S^2 - S^4 A291400
1 - S - S^4 A291401
1 - S^3 - S^4 A291402
1 - 2 S^2 - S^4 A291403
1 - S^2 - 2 S^4 A291404
1 - 2 S^2 - 2 S^4 A291405
1 - S^3 - S^6 A291407
(1 - S)(1 - S^2) A291408
(1 - S^2)(1 - S)^2 A291409
1 - S - S^2 - 2 S^3 A291410
1 - 2 S - S^2 + S^3 A291411
1 - S - 2 S^2 + S^3 A291412
1 - 3 S + S^2 + S^3 A291413
1 - 2 S + S^3 A291414
1 - 3 S + S^2 A291415
1 - 4 S + S^2 A291416
1 - 4 S + 2 S^2 A291417

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^2; p = 1 - 2 s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291382 *)

Formula

G.f.: (-2 - 3 x - 2 x^2 - x^3)/(-1 + 2 x + 3 x^2 + 2 x^3 + x^4).
a(n) = 2*a(n-1) + 3*a(n-2) + 2*a(n-3) + a(n-4) for n >= 5.

A073387 Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(2+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
T(n, k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length for the letters 0,1. - Milan Janjic, Jan 14 2017

Examples

			Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
    1;
    2,    1;
    6,    4,    1;
   16,   16,    6,    1;
   44,   56,   30,    8,   1;
  120,  188,  128,   48,  10,   1;
  328,  608,  504,  240,  70,  12,   1;
  896, 1920, 1872, 1080, 400,  96,  14,  1;
		

Crossrefs

Cf. A002605, A007482 (row sums), A053121, A073403, A073404.
Columns: A002605 (k=0), A073388 (k=1), A073389 (k=2), A073390 (k=3), A073391 (k=4), A073392 (k=5), A073393 (k=6), A073394 (k=7), A073397 (k=8), A073398 (k=9).

Programs

  • Magma
    A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
    [A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
  • Mathematica
    T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
  • SageMath
    def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
    flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022

Formula

T(n, k) = 2*(p(k-1, n-k)*(n-k+1)*T(n-k+1) + q(k-1, n-k)*(n-k+2)*T(n-k))/(k!*12^k), n >= k >= 1, with T(n) = T(n, k=0) = A002605(n), else 0; p(m, n) = Sum_{j=0..m} A(m, j)*n^(m-j) and q(m, n) = Sum_{j=0..m} B(m, j)*n^(m-j) with the number triangles A(k, m) = A073403(k, m) and B(k, m) = A073404(k, m).
T(n, k) = Sum_{j=0..floor((n-k)/2)} 2^(n-k-j)*binomial(n-j, k)*binomial(n-k-j, j) if n > k, else 0.
T(n, k) = ((n-k+1)*T(n, k-1) + 2*(n+k)*T(n-1, k-1))/(6*k), n >= k >= 1, T(n, 0) = A002605(n+1), else 0.
Sum_{k=0..n} T(n, k) = A007482(n).
G.f. for column m (without leading zeros): 1/(1-2*x*(1+x))^(m+1), m>=0.
T(n,k) = 2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2) for n>=1. - Peter Luschny, Apr 25 2016
From G. C. Greubel, Oct 03 2022: (Start)
T(n, n-1) = A005843(n), n >= 1.
T(n, n-2) = 2*A005563(n-1), n >= 2.
T(n, n-3) = 4*A159920(n-1), n >= 2.
Sum_{k=0..n} (-1)^k*T(n, k) = A001045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1). (End)

A073389 Second convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 6, 30, 128, 504, 1872, 6672, 23040, 77616, 256288, 832416, 2666496, 8441600, 26454528, 82174464, 253280256, 775316736, 2358812160, 7137023488, 21487386624, 64401106944, 192229535744, 571630694400, 1693996941312, 5004131659776, 14738997288960, 43293528760320
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Third (m=2) column of triangle A073387, A073388.
Cf. A002605.

Programs

  • GAP
    List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+2,2)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^3 )); // G. C. Greubel, Oct 03 2022
  • Mathematica
    CoefficientList[Series[1/(1-2x(1+x))^3,{x,0,25}],x]  (* Harvey P. Dale, Mar 14 2011 *)
  • Sage
    taylor( 1/(1-2*x-2*x^2)^3, x, 0, 25).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
    

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k) with b(k) = A002605(k) and c(k) = A073388(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2)*binomial(n-k, k)*2^(n-k).
a(n) = (n+3)*((n+1)*U(n+1) + (n+2)*U(n))/12, with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^3.

A099432 Convolution of A030195(n) (generalized (3,3)-Fibonacci) with itself.

Original entry on oeis.org

1, 6, 33, 162, 756, 3402, 14931, 64314, 273051, 1145988, 4764744, 19656756, 80561061, 328316814, 1331513397, 5377120038, 21633427836, 86747114430, 346810621815, 1382826606210, 5500378861551, 21830478128136, 86469557676048
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Crossrefs

Cf. A073388.

Programs

  • Mathematica
    LinearRecurrence[{6,-3,-18,-9},{1,6,33,162},30] (* Harvey P. Dale, May 20 2011 *)

Formula

G.f.: 1/(1 - 3*x - 3*x^2)^2.
a(n) = 6*a(n-1) - 3*a(n-2) - 18*a(n-3) - 9*a(n-4). [corrected by Harvey P. Dale, May 20 2011]
a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)*3^(n-k+1).
a(n) = (sqrt(7)*n + 2*sqrt(7) - sqrt(3))*(5*sqrt(7)/98 + sqrt(3)/14)*(3*sqrt(21)/2 + 15/2)^(n/2) + (15/2 - 3*sqrt(21)/2)^(n/2)*(sqrt(7)*n + 2*sqrt(7) + sqrt(3))*(5*sqrt(7)/98 - sqrt(3)/14)*(-1)^n.

A118357 Triangle read by rows: T(n,k) is the number of ternary sequences of length n containing k subsequences 00 (n>=0, 0<=k<=max(0,n-1)).

Original entry on oeis.org

1, 3, 8, 1, 22, 4, 1, 60, 16, 4, 1, 164, 56, 18, 4, 1, 448, 188, 68, 20, 4, 1, 1224, 608, 248, 80, 22, 4, 1, 3344, 1920, 864, 312, 92, 24, 4, 1, 9136, 5952, 2928, 1152, 380, 104, 26, 4, 1, 24960, 18192, 9696, 4128, 1472, 452, 116, 28, 4, 1, 68192, 54976, 31536, 14400
Offset: 0

Views

Author

Emeric Deutsch, May 24 2006

Keywords

Comments

Sum of entries in row n is 3^n (A000244). T(n,0) = A028859(n). T(n,1) = A073388(n-2). Sum(k*T(n,k),k=0..n-1) = (n-1)*3^(n-2) (A027471).

Examples

			T(4,2) = 4 because we have 0001, 0002, 1000 and 2000.
Triangle starts:
1;
3;
8,1;
22,4,1;
60,16,4,1;
		

Crossrefs

Programs

  • Maple
    G:=(1+(1-t)*z)/(1-(2+t)*z-2*(1-t)*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: 1; for n from 1 to 12 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
  • Mathematica
    nn=15;a=1/(1-2x);b=x/(1-y x)+1;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[a b/(1-2x^2/((1-y x)(1-2x))),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 19 2012 *)

Formula

G.f.: G-1, where G = G(t,z) = [1+(1-t)z]/[1-(2+t)z-2(1-t)z^2]. G.f. of column k is z^(k+1)*(1-2z)^(k-1)/(1-2z-2z^2)^(k+1) (k>=1).

A109634 Number of 1's that appear among all ternary strings of length n that contain no consecutive 1's.

Original entry on oeis.org

0, 1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024, 166276481024, 472876388352
Offset: 0

Views

Author

Ralph P. Grimaldi (ralph.grimaldi(AT)rose-hulman.edu), Aug 03 2005

Keywords

References

  • Ralph P. Grimaldi, Ternary Strings with No Consecutive 1's, Ars Combin. 89 (2008), 321-343.

Programs

  • Mathematica
    f[n_] := Simplify[(2Sqrt[3] (-(1 - Sqrt[3])^n + (1 + Sqrt[3])^n) + 3n*((1 - Sqrt[3])^(1 + n) + (1 + Sqrt[3])^(1 + n)))/36]; Table[ f[n], {n, 0, 25}] (* Robert G. Wilson v *)

Formula

(sqrt(3)/18)*((1+sqrt(3))^n - (1-sqrt(3))^n)+(n/12)*((1+sqrt(3))^(n+1)+(1-sqrt(3))^(n+1))
Conjecture: a(n)=A073388(n-1). [From R. J. Mathar, Aug 18 2008]

Extensions

More terms from Robert G. Wilson v, Aug 05 2005
Showing 1-7 of 7 results.