cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: J. Devillet

J. Devillet's wiki page.

J. Devillet has authored 16 sequences. Here are the ten most recent ones:

A308362 Number of (2k+1)-ary quasitrivial semigroups on an n-element set.

Original entry on oeis.org

1, 5, 23, 162, 1382, 14236, 170872, 2344530, 36188534, 620652000, 11708927276, 240976560622, 5372724404530, 129002764437228, 3318690040767224, 91067432174168202, 2655146132506208558, 81966680980803524728, 2670959894858615348356, 91616517379045122841830
Offset: 1

Author

J. Devillet, May 22 2019

Keywords

Comments

Number of (2k+1)-ary associative and quasitrivial operations on an n-element set.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[(2 + x^2)/(6 - 4*E^x + 2*x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)

Formula

a(n) = A308352(n) + A292933(n) + A308354(n) for n >= 1.
a(n) = A292932(n) + binomial(n,2)*A292932(n-2) for n >= 2.
E.g.f.: (2 + x^2)/(6 - 4*exp(x) + 2*x). - Vaclav Kotesovec, Jun 05 2019
a(n) ~ n! * (r^2 - 6*r + 11) / (2*(r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019

A308351 For n >= 2, a(n) = n*u(n-1) + n*(n-1)*u(n-2), where u = A292932; a(1)=1.

Original entry on oeis.org

1, 4, 18, 128, 1090, 11232, 134806, 1849696, 28550538, 489656720, 9237631150, 190115847792, 4238752713442, 101775333547552, 2618244556598310, 71846664091504064, 2094748778352174202, 64666725024407102064, 2107224874854168508126, 72279858915240296971600
Offset: 1

Author

J. Devillet, May 21 2019

Keywords

Crossrefs

Programs

  • Maple
    E:= x*(1 + x)/(3 - 2*exp(x) + x):
    S:= series(E,x,51):
    seq(coeff(S,x,n)*n!,n=1..50); # Robert Israel, Nov 26 2020
  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[x*(1 + x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)

Formula

a(n) = n*A292932(n-1) + n*(n-1)*A292932(n-2) = A292933(n) + n*A292933(n-1) for n >= 2.
E.g.f.: x*(1 + x)/(3 - 2*exp(x) + x). - Vaclav Kotesovec, Jun 05 2019
a(n) ~ n! * (r-2) / ((r-1) * (r-3)^n), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019

A308352 Number of k-ary quasitrivial semigroups that have no neutral element on an n-element set.

Original entry on oeis.org

0, 2, 8, 58, 492, 5074, 60888, 835482, 12895796, 221169970, 4172486496, 85872215290, 1914575169756, 45970251182418, 1182618181384424, 32451961380002458, 946163712877067460, 29208900504551394610, 951798961321369842864, 32647628386008050898810
Offset: 1

Author

J. Devillet, May 21 2019

Keywords

Comments

Number of k-ary associative and quasitrivial operations that have no neutral element on an n-element set.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[(1 - x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    seq(n)={Vec(-1+serlaplace((1-x)/(x+3-2*exp(x))) + O(x*x^n), -n)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A292932(n) - n*A292932(n-1) = A292932(n) - A292933(n) for n >= 1.
a(n) ~ n! * (4-r) / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019
E.g.f.: (1 - x)/(x + 3 - 2*exp(x)). - Andrew Howroyd, Aug 19 2019

A308354 Number of (2k+1)-ary quasitrivial semigroups that have two neutral elements on an n-element set.

Original entry on oeis.org

0, 1, 3, 24, 200, 2070, 24822, 340648, 5257800, 90174690, 1701190370, 35011502460, 780603478668, 18742820292742, 482172697215510, 13231193297338320, 385766358723033104, 11908944548154971946, 388063941316923002634, 13310969922203225028580
Offset: 1

Author

J. Devillet, May 21 2019

Keywords

Comments

Number of (2k+1)-ary associative and quasitrivial operations that have two neutral elements on an n-element set.

Crossrefs

Cf. A292932.

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[x^2/(3 - 2*E^x + x)/2, {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)

Formula

a(n) = binomial(n,2)*A292932(n-2) for n >= 2.
E.g.f.: x^2/(3 - 2*exp(x) + x)/2. - Vaclav Kotesovec, Jun 05 2019
a(n) ~ n! / (2*(r-1) * (r-3)^(n-1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019

A307005 Expansion of e.g.f. (2*exp(x)-2*x-x^2)/(2-2*x-x^2).

Original entry on oeis.org

1, 1, 3, 13, 71, 486, 3982, 38081, 416145, 5116222, 69888746, 1050168417, 17214678241, 305703953660, 5846391071172, 119794781201881, 2618283427770737, 60802908515558346, 1495049717728972990, 38803241993010963977, 1060124286228724147641, 30411290829335509535632
Offset: 0

Author

J. Devillet, Mar 19 2019

Keywords

Comments

Number of totally ordered partitions on an n-element set where each non-minimal class contains at most 2 elements.
Convention a(0) = 1.

Crossrefs

Cf. A307006.

Programs

  • Mathematica
    Nest[Append[#1, 1 + #2 #1[[-1]] + #2 (#2 - 1) #1[[-2]]/2 ] & @@ {#, Length@ #} &, {1, 1, 3}, 19] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((2*exp(x)-2*x-x^2)/(2-2*x-x^2))) \\ Felix Fröhlich, Mar 19 2019

Formula

Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 1 + (n+2)*a(n+1) + (1/2)*(n+2)*(n+1)*a(n).
a(n) = Sum_{i=0..n} (n!/(n + 1 - i)!)*((sqrt(3)/3)*((1 + sqrt(3))/2)^i - (sqrt(3)/3)*((1 - sqrt(3))/2)^i).

Extensions

More terms from Michel Marcus, Apr 20 2019

A307006 Expansion of e.g.f. (2*exp(x)-1-2*x-x^2)/(1-x-x^2).

Original entry on oeis.org

1, 1, 4, 20, 130, 1052, 10214, 115684, 1497458, 21806372, 352834942, 6279885284, 121932835754, 2564788969108, 58098821674742, 1410088008633812, 36505125340079074, 1004131069129741124, 29244927598399536878, 899066450011962665092, 29094401487631077315482, 988590340245276942963764
Offset: 0

Author

J. Devillet, Mar 19 2019

Keywords

Comments

Number of associative and quasitrivial binary operations on an n-element set that are order-preserving for some total ordering.
Convention a(0) = 1.

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, 2 + #2 #1[[-1]] + #2 (#2 - 1) #1[[-2]] ] & @@ {#, Length@ #} &, {1, 1, 4}, 19] (* Michael De Vlieger, Apr 21 2019 *)
    With[{nn=30},CoefficientList[Series[(2Exp[x]-1-2x-x^2)/(1-x-x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((2*exp(x)-1-2*x-x^2)/(1-x-x^2))) \\ Felix Fröhlich, Mar 19 2019

Formula

Recurrence: a(1) = 1, a(2) = 4, a(n+2) = 2 + (n+2)*a(n+1) + (n+2)*(n+1)*a(n).
a(n) = n!*A000045(n) + 2*Sum_{i=0..n} (n!/(n + 1 - i)!)*A000045(i).

Extensions

More terms from Michel Marcus, Apr 20 2019

A296965 Expansion of x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182
Offset: 0

Author

J. Devillet, Dec 22 2017

Keywords

Comments

a(n) = A000225(n)-1, a(0)=0, a(1)=1. Number of quasilinear weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1<...
Essentially the same as A095121 and A000918. - R. J. Mathar, Jan 02 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* or *)
    LinearRecurrence[{3, -2}, {0, 1, 2, 6}, 34] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 2^n - 2 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3. (End)
a(n) = A134067(n-2) for n >= 3. - Georg Fischer, Oct 30 2018
E.g.f.: 1 + exp(x)*(exp(x) - 2) + x. - Stefano Spezia, May 07 2023

A296964 Expansion of e.g.f. (exp(x)-x)*x/(1-x).

Original entry on oeis.org

0, 1, 2, 9, 40, 205, 1236, 8659, 69280, 623529, 6235300, 68588311, 823059744, 10699776685, 149796873604, 2246953104075, 35951249665216, 611171244308689, 11001082397556420, 209020565553571999, 4180411311071440000, 87788637532500240021, 1931350025715005280484, 44421050591445121451155
Offset: 0

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Number of quasilinear weak orderings R on {1,...,n} and for which {1,...,n} has exactly one maximal element for the quasilinear weak ordering R.
Essentially the same as A038156. - R. J. Mathar, Jan 02 2018

Crossrefs

Programs

  • Mathematica
    Join[{0,1},Drop[With[{nn=30},CoefficientList[Series[(Exp[x]-x)*x/(1-x),{x,0,nn}],x] Range[0,nn]!],2]] (* Harvey P. Dale, Apr 02 2018 *)
  • Sage
    x = QQ[['x']].gen()
    f = (exp(x) - x) * x / (1 - x)
    f.egf_to_ogf()  # F. Chapoton, Jul 21 2025

Formula

a(n) = A002627(n)-1, a(0)=0, a(1)=1.

A296954 Expansion of x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468, 6442450940, 12884901884
Offset: 0

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Number of bisymmetric, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.
Apart from the offset the same as A131128. - R. J. Mathar, Jan 02 2018

Crossrefs

Cf. A296953.

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 4 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* Michael De Vlieger, Dec 23 2017 *)
    LinearRecurrence[{3,-2},{0,1,2,8},40] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    concat(0, Vec(x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

a(n) = A296953(n)-2, a(0)=0, a(1)=1.
From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 3*2^(n-1) - 4 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)

Extensions

G.f. in the name replaced by a better g.f. by Colin Barker, Dec 23 2017

A296953 Number of bisymmetric, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n}.

Original entry on oeis.org

0, 1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470, 6442450942, 12884901886
Offset: 0

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Apart from the offset the same as A033484. - R. J. Mathar, Alois P. Heinz, Jan 02 2018

Programs

  • Mathematica
    Nest[Append[#, 2 Last@ # + 2] &, {0, 1}, 32] (* or *)
    Array[3*2^(# - 1) - 2 + Boole[# == 0]/2 &, 34, 0] (* or *)
    CoefficientList[Series[x (1 + x)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    concat(0, Vec(x*(1 + x) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

a(0)=0, a(1)=1, a(n+1)-2*a(n) = 2.
From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 + x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*2^(n-1) - 2 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

Extensions

G.f. replaced by a better g.f. by Colin Barker, Dec 23 2017