cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A296954 Expansion of x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468, 6442450940, 12884901884
Offset: 0

Views

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Number of bisymmetric, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.
Apart from the offset the same as A131128. - R. J. Mathar, Jan 02 2018

Crossrefs

Cf. A296953.

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 4 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* Michael De Vlieger, Dec 23 2017 *)
    LinearRecurrence[{3,-2},{0,1,2,8},40] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    concat(0, Vec(x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

a(n) = A296953(n)-2, a(0)=0, a(1)=1.
From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 3*2^(n-1) - 4 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)

Extensions

G.f. in the name replaced by a better g.f. by Colin Barker, Dec 23 2017
Showing 1-1 of 1 results.