cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073387 Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(2+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
T(n, k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length for the letters 0,1. - Milan Janjic, Jan 14 2017

Examples

			Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
    1;
    2,    1;
    6,    4,    1;
   16,   16,    6,    1;
   44,   56,   30,    8,   1;
  120,  188,  128,   48,  10,   1;
  328,  608,  504,  240,  70,  12,   1;
  896, 1920, 1872, 1080, 400,  96,  14,  1;
		

Crossrefs

Cf. A002605, A007482 (row sums), A053121, A073403, A073404.
Columns: A002605 (k=0), A073388 (k=1), A073389 (k=2), A073390 (k=3), A073391 (k=4), A073392 (k=5), A073393 (k=6), A073394 (k=7), A073397 (k=8), A073398 (k=9).

Programs

  • Magma
    A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
    [A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
  • Mathematica
    T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
  • SageMath
    def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
    flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022

Formula

T(n, k) = 2*(p(k-1, n-k)*(n-k+1)*T(n-k+1) + q(k-1, n-k)*(n-k+2)*T(n-k))/(k!*12^k), n >= k >= 1, with T(n) = T(n, k=0) = A002605(n), else 0; p(m, n) = Sum_{j=0..m} A(m, j)*n^(m-j) and q(m, n) = Sum_{j=0..m} B(m, j)*n^(m-j) with the number triangles A(k, m) = A073403(k, m) and B(k, m) = A073404(k, m).
T(n, k) = Sum_{j=0..floor((n-k)/2)} 2^(n-k-j)*binomial(n-j, k)*binomial(n-k-j, j) if n > k, else 0.
T(n, k) = ((n-k+1)*T(n, k-1) + 2*(n+k)*T(n-1, k-1))/(6*k), n >= k >= 1, T(n, 0) = A002605(n+1), else 0.
Sum_{k=0..n} T(n, k) = A007482(n).
G.f. for column m (without leading zeros): 1/(1-2*x*(1+x))^(m+1), m>=0.
T(n,k) = 2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2) for n>=1. - Peter Luschny, Apr 25 2016
From G. C. Greubel, Oct 03 2022: (Start)
T(n, n-1) = A005843(n), n >= 1.
T(n, n-2) = 2*A005563(n-1), n >= 2.
T(n, n-3) = 4*A159920(n-1), n >= 2.
Sum_{k=0..n} (-1)^k*T(n, k) = A001045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1). (End)

A073392 Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 12, 96, 616, 3444, 17472, 82432, 367488, 1565280, 6421376, 25525248, 98773248, 373450112, 1383674880, 5036089344, 18041821184, 63727070976, 222249968640, 766234140672, 2614196680704, 8834194123776
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Examples

			x^6 + 12*x^7 + 96*x^8 + 616*x^9 + 3444*x^10 + ... + 222249968640*x^23 + 766234140672*x^24 + 2614196680704*x^25 + 8834194123776*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009
		

Crossrefs

Sixth (m=5) column of triangle A073387.

Programs

  • GAP
    List([0..30], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+5,5)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^6 )); // G. C. Greubel, Oct 04 2022
  • Mathematica
    CoefficientList[Series[1/(1-2*x*(1+x))^6, {x,0,30}],x] (* Harvey P. Dale, May 12 2018 *)
  • Sage
    taylor( 1/(1-2*x-2*x^2)^6, x, 0, 30).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 04 2022
    

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073391(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+5, 5)*binomial(n-k, k)*2^(n-k).
a(n) = (n+4)*(n+8)*((19*n^2 + 158*n + 275)*(n+1)*U(n+1) + 2*(7*n^2 + 52*n + 65)*(n+2)*U(n))/(2^6*3^4*5), with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^6.
Showing 1-2 of 2 results.