A282497 'Somos expansion' of e: e=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=e.
2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1
Offset: 0
Keywords
A282496 'Somos expansion' of Pi: Pi=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=Pi.
3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1
Offset: 0
Keywords
Comments
1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1
Examples
Integer part of Pi is 3. Integer part of Pi^2/9 is 1.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 0..1999
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1000; x00 = Pi; x0 = x00; Nm = 130; j = 1; Res = Table[1, {j, 1, Nm}]; While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000]; j++]; Res
Formula
Product_{k>=0} a(k)^(1/2^k) = Pi.
A281873 a(n+1) is the smallest number greater than a(n) such that Sum_{j=1..n+1} 1/a(j) <= 4, a(1) = 1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 200, 77706, 16532869712, 3230579689970657935732, 36802906522516375115639735990520502954652700
Offset: 1
Comments
The method for any number A is to find the largest harmonic number H(n) smaller than A, then use the greedy algorithm to expand the difference A - H(n).
A140335 is the same sequence for 3. The sequence for 5 consists of 99 terms, the largest of which has 142548 digits.
References
- A. M. Gleason, R. E. Greenwood, and L. M. Kelly, The William Lowell Putnam Mathematical Competition, Problems and Solutions, 1938-1964, MAA, 1980, pages 398-399.
Links
- John Scholes, 14th Putnam Mathematical Competition, 1954, Problem B6, after Gleason, Greenwood & Kelly.
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
x0=4-Sum[1/k,{k,1,30}]; Nm=10; j=0; While[x0>0||j==Nm,a0=Ceiling[1/x0]; x0=x0-1/a0; Print[a0];j++] f[s_List, n_] := Block[{t = Total[1/s]}, Append[s, Max[ s[[-1]] +1, Ceiling[1/(n - t)]]]]; Nest[f[#, 4] &, {1}, 34] (* Robert G. Wilson v, Feb 05 2017 *)
-
Python
from sympy import egyptian_fraction print(egyptian_fraction((4, 1))) # Pontus von Brömssen, Feb 10 2019
Formula
Sum_{k=1..35} 1/a(k) = 4.
A278288 a(n) is the number of ways to represent a(n-1) as a sum of two distinct terms from a(0) to a(n-2). a(0) = 0. a(1) = a(2) = 1.
0, 1, 1, 1, 2, 3, 3, 4, 6, 2, 4, 8, 3, 8, 4, 12, 6, 10, 10, 11, 12, 15, 9, 12, 19, 7, 15, 17, 10, 18, 22, 17, 12, 22, 21, 22, 25, 25, 26, 22, 26, 26, 27, 32, 25, 30, 27, 35, 21, 23, 31, 31, 32, 37, 37, 38, 37, 39, 37, 40, 40, 41, 45, 28, 37, 42, 38, 50, 33, 43, 58, 34
Offset: 0
Keywords
Comments
Examples
a(2) = a(1) + a(0), so a(3) = 1. a(3) = a(1) + a(0) = a(2) + a(0), so a(4) = 2. a(4) = a(3) + a(2) = a(3) + a(1) = a(2) + a(1), so a(5) = 3.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 0..2999
- Yuriy Sibirmovsky, The plot of a(n) for n=0..2999 (with linear regression)
Programs
-
Mathematica
Nm=100; A=Table[1,{n,1,Nm}]; A[[1]]=0; Do[Nc=0; Do[If[A[[j]]+A[[k]]==A[[n]] && k!=j,Nc++],{j,1,n-1},{k,1,j}]; A[[n+1]]=Nc,{n,3,Nm-1}]; A
A276819 a(n) = (9*n^2 - n)/2 + 1.
1, 5, 18, 40, 71, 111, 160, 218, 285, 361, 446, 540, 643, 755, 876, 1006, 1145, 1293, 1450, 1616, 1791, 1975, 2168, 2370, 2581, 2801, 3030, 3268, 3515, 3771, 4036, 4310, 4593, 4885, 5186, 5496, 5815, 6143, 6480, 6826, 7181, 7545, 7918, 8300, 8691, 9091, 9500, 9918, 10345, 10781, 11226, 11680, 12143, 12615
Offset: 0
Comments
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yuriy Sibirmovsky, Six diagonals of the triangular spiral.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[(9*n^2-n)/2+1, {n,0,100}]
-
PARI
Vec((1+2*x+6*x^2)/(1-x)^3 + O(x^60)) \\ Colin Barker, Sep 18 2016
-
PARI
a(n) = (9*n^2 - n)/2 + 1; \\ Altug Alkan, Sep 18 2016
Formula
a(n) = (9*n^2 - n)/2 + 1.
a(n) = a(n-1) + 9*n - 5 with a(0) = 1.
From Colin Barker, Sep 18 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: (1 + 2*x + 6*x^2)/(1 - x)^3. (End)
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A006137(n) - n.
E.g.f.: exp(x)*(2 + 8*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022
A276806 Height of the shortest binary factorization tree of n.
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 2, 2, 0, 2, 0, 3, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 3, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 2, 3, 1, 2, 0, 2, 1, 2, 0, 3, 0, 1, 2, 2, 1, 2, 0, 3, 2, 1, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 1, 3, 0, 2, 2, 2
Offset: 1
Keywords
Comments
Among all possible binary factorization trees of n we choose a tree with minimal height. The choice may not be unique. a(n) gives the height of the chosen tree.
The positions at which numbers (1,2,3) first appear are respectively (4,8,32). The latter sequence can be described by the formula b(n) = 2^(2^(n-1) + 1).
Examples
a(12) = 2 since 12 cannot be factored in a binary factorization tree of height less than 2, but it can be factored in a tree of height 2, e.g., 12 / \ 4 3 / \ 2 2 Similarly, a(16) = 2: 16 / \ / \ 4 4 / \ / \ 2 2 2 2 and a(40) = 2: 40 / \ / \ 4 10 / \ / \ 2 2 2 5 and a(84) = 2: 84 / \ / \ 4 21 / \ / \ 2 2 3 7
Links
Programs
-
PARI
a(n)=if(n>1,my(b=bigomega(n),c=(2^logint(b,2)!=b));logint(b,2)+c,0) \\ David A. Corneth, Oct 01 2016
-
PARI
A276806(n) = { my(m=0,h); if((1==n)||isprime(n),0,fordiv(n,d,if((d>1)&&(d
A276806(d),A276806(n/d)); if(!m || (h < m),m=h)))); m; }; \\ Antti Karttunen, Aug 12 2017
Formula
a(n^2) = a(n) + 1.
A276771 a(n) is the number of runs of an algorithm. Set b_0 = n, if prime or 1 or 0, stop; else, set c_0 = largest divisor of n (!=n); set b_1 = c_0 - b_0/c_0. Run with b_1.
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 2, 2, 0, 2, 1, 1, 2, 3, 0, 1, 0, 2, 2, 2, 1, 3, 0, 1, 2, 2, 0, 1, 0, 3, 3, 3, 0, 3, 1, 1, 2, 3, 0, 2, 2, 2, 3, 3, 0, 4, 0, 1, 2, 2, 2, 1, 0, 3, 3, 3, 0, 3, 0, 2, 3, 4, 2, 1, 0, 2, 3, 3, 0, 3, 3, 1, 2, 2, 0, 1, 2, 4, 4, 4, 2, 4, 0, 1, 2, 4
Offset: 1
Keywords
Comments
For large n: Sum_{k=1..n} a(k) ~ n*log(n)/2 - n/2 (conjectured).
Examples
For n=14: b_0 = 14, not prime or 1 or 0. c_0 = 7. b_1 = 7 - 2 = 5. 5 is prime. In short: 14 -> {7,2} -> 5. Number of runs a(14) = 1.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 1..1000
- Yuriy Sibirmovsky, Plot of sum_{k=1..n} a(k) for n = 1..20000
Programs
-
Mathematica
Nm=100; a=Table[0,{n,1,Nm}]; Do[b0=n; j=0; While[PrimeQ[b0]==False&&b0!=1&&b0!=0,c=Reverse[Divisors[b0]]; b1=c[[2]]-b0/c[[2]]; b0=b1;j++]; a[[n]]=j,{n,1,Nm}]; a
-
PARI
stop(n) = (n<=1) || isprime(n); a(n) = {b = n; nb = 0; while (! stop(b), d = divisors(b); c = d[#d-1]; b = c - b/c; nb++;); nb;} \\ Michel Marcus, Sep 19 2016
A276770 a(n) is the number of runs of an algorithm. Set b_0 = n, if prime, stop; else, set c_0 = largest divisor of n (!=n); set b_1 = c_0 + b_0/c_0. Run with b_1.
0, 1, 0, 2, 2, 1, 0, 3, 0, 3, 3, 2, 0, 1, 0, 4, 2, 1, 0, 4, 2, 4, 4, 3, 0, 1, 0, 2, 4, 1, 4, 5, 0, 3, 3, 2, 0, 1, 0, 5, 2, 3, 0, 5, 4, 5, 5, 4, 0, 1, 3, 2, 2, 1, 0, 3, 0, 5, 5, 2, 2, 5, 0, 6, 5, 1, 0, 4, 0, 4, 4, 3, 2, 1, 0, 2, 2, 1, 0, 6, 2, 3, 3, 4, 0, 1, 5, 6, 2, 5, 5, 6, 0, 6, 6, 5, 0, 1, 0, 2, 4
Offset: 5
Keywords
Comments
a(4) -> infinity. For any other n >= 2, a(n) is finite, however cases n = 2,3 are trivial, so the offset is 5.
For large n: Sum_{k=5..n} a(k) ~ n*log(n)/2 (conjectured).
Examples
For n=14: b_0 = 14, not prime. c_0 = 7. b_1 = 7 + 2 = 9. 9 is not prime. In short: 14 -> {7,2} -> 9 -> {3,3} -> 6 -> {3,2} -> 5. Number of runs a(14) = 3.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 5..1000
- Yuriy Sibirmovsky, Plot of sum_{k=5..n} a(k) for n = 5..20000
Programs
-
Mathematica
Nm=100; a=Table[0,{n,1,Nm}]; Do[b0=n; j=0; While[PrimeQ[b0]==False,c=Reverse[Divisors[b0]]; b1=c[[2]]+b0/c[[2]]; b0=b1;j++]; a[[n]]=j,{n,5,Nm}]; Table[a[[k]],{k,5,Nm}]
-
PARI
stop(n) = (n<=1) || isprime(n); a(n) = {b = n; nb = 0; while (! stop(b), d = divisors(b); c = d[#d-1]; b = c + b/c; nb++;); nb;} \\ Michel Marcus, Sep 19 2016
A276648 Number of points of norm <= n in the body-centered cubic lattice with the lattice parameter equal to 2/sqrt(3).
1, 9, 59, 169, 339, 701, 1243, 1893, 2741, 3943, 5577, 7343, 9409, 12039, 15065, 18421, 22227, 26717, 31879, 37461, 43655, 50557, 58071, 66227, 75121, 85083, 95801, 107227, 119541, 133019, 147271, 161901, 178127, 195481, 214143
Offset: 0
Keywords
Comments
Experimentally observed dense bcc clusters of gold contain 1, 9, 59, 169, 339, 701 and 1243 nanoparticles (N.G. Khlebtsov, Fig. 32 and text on p. 208), exactly matching the first 7 terms of the sequence.
First 5 terms are the same as A276450.
Examples
The origin has norm 0, thus a(0)=1. The distance to the 8 vertices of the cube from the origin is 1, because the edge of the cube is 2/sqrt(3). Thus a(1)=9.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 0..50
- N. G. Khlebtsov, T-matrix method in plasmonics: An overview, J. Quantitative Spectroscopy & Radiative Transfer 123 (2013) 184-217.
Crossrefs
Cf. A276450.
Programs
-
Mathematica
DecM[A_]:=A[[1]]^2+A[[2]]^2+A[[3]]^2; Do[N1=0;N2=0; Do[A={l,k,j}; B={l+1/2,k+1/2,j+1/2}; If[DecM[A]<=3/4r^2,N1+=1]; If[DecM[B]<=3/4r^2,N2+=1],{l,-r-1,r+1},{k,-r-1,r+1},{j,-r-1,r+1}]; Print[r," ",N1+N2],{r,0,20}]
A276472
Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.
1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1
Comments
The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).
Examples
Triangle T(n,k) begins: n\k 1 2 3 4 5 6 7 8 9 1 1 2 1 2 3 4 3 5 4 11 7 8 13 5 29 18 15 21 34 6 76 47 33 36 55 89 7 199 123 80 69 91 144 233 8 521 322 203 149 160 235 377 610 9 1364 843 525 352 309 395 612 987 1597 ... In another format: __________________1__________________ _______________1_____2_______________ ____________4_____3_____5____________ ________11_____7_____8_____13________ ____29_____18_____15____21_____34____ _76_____47____33_____36____55_____89_
Links
- Yuriy Sibirmovsky, T(n,k), read by rows as a linear sequence a(j) for j = 1..5050
- Yuriy Sibirmovsky, Symmetrical hexagonal arrangement for initial terms of T(n,k)
- Yuriy Sibirmovsky, T(n,k) compared with Pascal's triangle
- Yuriy Sibirmovsky, Illustration for T(n,k) mod 3
Crossrefs
Programs
-
Mathematica
Nm=12; T=Table[0,{n,1,Nm},{k,1,n}]; T[[1,1]]=1; T[[2,1]]=1; T[[2,2]]=2; Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]]; T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]]; If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}]; {Row[#,"\t"]}&/@T//Grid
-
PARI
T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (k
Michel Marcus, Sep 14 2016
Formula
Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula