cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A038730 Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 12, 13, 1, 8, 23, 33, 34, 1, 10, 38, 73, 88, 89, 1, 12, 57, 141, 211, 232, 233, 1, 14, 80, 245, 455, 581, 609, 610, 1, 16, 107, 393, 888, 1350, 1560, 1596, 1597, 1, 18, 138, 593, 1594, 2881, 3805, 4135, 4180, 4181
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Examples

			Triangle T(i,j) begins as follows:
  1;
  1,  2;
  1,  4,  5;
  1,  6, 12,  13;
  1,  8, 23,  33,  34;
  1, 10, 38,  73,  88,  89;
  1, 12, 57, 141, 211, 232, 233;
  ... [edited by _Petros Hadjicostas_, Sep 02 2019]
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j-2, j): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
    
  • Maple
    t:= proc(i, j) option remember; `if`(i=1 or j=1, 1,
          max(t(i-1, j)+t(i-1, j-1), t(i-1, j-1)+t(i, j-1)))
        end:
    T:= (i, j)-> t(2*i-j, j):
    seq(seq(T(i, j), j=1..i), i=1..10);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    T[i_, j_]:= Sum[Binomial[2i-k-2, k], {k,0,j-1}];
    Table[T[i, j], {i, 1, 10}, {j, 1, i}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
  • SageMath
    def A038730(n,k): return sum( binomial(2*n-j-2, j) for j in (0..k-1))
    flatten([[A038730(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022

Formula

T(n, n) = A001519(n) for n >= 1 (odd-indexed Fibonacci numbers).
From Petros Hadjicostas, Sep 03 2019: (Start)
Following Dil and Mezo (2008, p. 944), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2). Then T(i, j) = F(2*i-1, j-1) for 1 <= j <= i.
G.f. for column j: Define g(t,j) = ((1+t)^j * (1+t-t^2) + (1-t)^j * (1-t-t^2))/2, which is a function of t^2. Then the g.f. for column j is Sum_{i >= j} T(i,j)*x^i = x^j * (Fibonacci(2*j-1) * (1-x)^(j+1) + Fibonacci(2*j-2) * x * (1-x)^j - x * g(sqrt(x), j)) / ((1-x)^j * (1-3*x+x^2)). This follows from the results in Pintér and Srivastava (1999).
(End)

A038738 Path-counting array T(i,j) obtained from array t in A038792 by T(i,j)=t(2i+1,j).

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 17, 21, 1, 9, 30, 50, 55, 1, 11, 47, 103, 138, 144, 1, 13, 68, 188, 314, 370, 377, 1, 15, 93, 313, 643, 895, 979, 987, 1, 17, 122, 486, 1201, 1993, 2455, 2575, 2584, 1, 19, 155, 715, 2080, 4082, 5798, 6590, 6755
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

T(n,n)=A001906(n) for n >= 0 (even-indexed Fibonacci numbers).
Row sums: A030267.

Examples

			Rows: {1}; {1,3}; {1,5,8}; {1,7,17,21}; ...
		

A038797 T(n+4,n), array T as in A038792.

Original entry on oeis.org

1, 6, 23, 73, 211, 581, 1560, 4135, 10890, 28590, 74946, 196326, 514123, 1346148, 3524441, 9227311, 24157645, 63245795, 165579930, 433494205, 1134902916, 2971214796, 7778741748, 20365010748, 53316290821, 139583862066, 365435295755, 956722025605, 2504730781495
Offset: 0

Views

Author

Clark Kimberling, May 02 2000

Keywords

Crossrefs

Apparently the same as A038737.
Cf. A038792.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-3*x+x^2)*(1-x)^3),{x,0,28}],x] (* Stefano Spezia, Apr 24 2023 *)

Formula

G.f.: 1/((1 - 3*x + x^2)*(1 - x)^3). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009]

Extensions

Definition corrected by R. J. Mathar, Sep 16 2009

A038736 T(3*n + 1, n + 1), array T as in A038792.

Original entry on oeis.org

1, 4, 23, 141, 888, 5676, 36622, 237821, 1551727, 10161409, 66732392, 439267525, 2897064773, 19137833146, 126599140313, 838477244705, 5559158604616, 36891869005316, 245025744759152, 1628602268643928, 10832010390274304, 72088640151558145, 480026332241373281, 3198037386794785777, 21315944308822771118
Offset: 0

Views

Author

Clark Kimberling, May 02 2000

Keywords

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)*hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4)):
    seq(simplify(a(n)), n = 0..24); # Peter Luschny, Sep 04 2019

Formula

G.f.: (g-1)^2/((1-3*g)*(g^2-3*g+1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
a(n) = A134511(4n,2n). - Alois P. Heinz, Mar 02 2018
a(n) = Sum_{j=0..n} binomial(4*n-j, j). - Petros Hadjicostas, Sep 04 2019
a(n) = hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)* hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4) for n > 0. - Peter Luschny, Sep 04 2019
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - Vaclav Kotesovec, Sep 04 2019

A038737 T(n,n-2), array T as in A038792.

Original entry on oeis.org

1, 6, 23, 73, 211, 581, 1560, 4135, 10890, 28590, 74946, 196326, 514123, 1346148, 3524441, 9227311, 24157645, 63245795, 165579930, 433494205, 1134902916, 2971214796, 7778741748, 20365010748, 53316290821, 139583862066
Offset: 2

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

Fifth diagonal of array defined by T(i, 1)=T(1, j)=1, T(i, j)=Max(T(i-1, j)+T(i-1, j-1); T(i-1, j-1)+T(i, j-1)). - Benoit Cloitre, Aug 05 2003

Crossrefs

Apparently the same as A038797, but with offset 2.
Cf. A038792.

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2/((1-3*x+x^2)*(1-x)^3), {x, 0, 27}], x]]] (* Georg Fischer, Apr 15 2020 *)
  • Maxima
    a(n):=sum(binomial(n+2,k+3)*fib(k),k,0,n); /* Vladimir Kruchinin, Oct 24 2016 */
    
  • Sage
    [sum(binomial(k+1,2)*fibonacci(2*n-2*k) for k in (0..n)) for n in (2..27)] # Stefano Spezia, Apr 24 2023

Formula

G.f.: x^2/((1-3*x+x^2)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n+2,k+3)*Fibonacci(k). - Vladimir Kruchinin, Oct 24 2016
a(n) = Sum_{k=0..n} binomial(k+1,2)*Fibonacci(2*n-2*k). - Greg Dresden and Yu Xiao, Jul 19 2020

A038793 T(n,n-3), array T as in A038792.

Original entry on oeis.org

1, 4, 8, 13, 21, 33, 50, 73, 103, 141, 188, 245, 313, 393, 486, 593, 715, 853, 1008, 1181, 1373, 1585, 1818, 2073, 2351, 2653, 2980, 3333, 3713, 4121, 4558, 5025, 5523, 6053, 6616, 7213, 7845, 8513, 9218, 9961, 10743, 11565, 12428
Offset: 3

Views

Author

Clark Kimberling, May 02 2000

Keywords

Formula

For n > 4, a(n) = (n^3-9*n^2+38*n-42)/6.
a(n) = sum(A007318(n-k, k), k=0..3), n > 4. - Johannes W. Meijer, Aug 11 2013

A038794 T(n,n-4), array T as in A038792.

Original entry on oeis.org

1, 5, 12, 21, 34, 55, 88, 138, 211, 314, 455, 643, 888, 1201, 1594, 2080, 2673, 3388, 4241, 5249, 6430, 7803, 9388, 11206, 13279, 15630, 18283, 21263, 24596, 28309, 32430, 36988, 42013, 47536, 53589, 60205, 67418, 75263
Offset: 4

Views

Author

Clark Kimberling, May 02 2000

Keywords

Formula

For n >= 7, a(n) = (n^4-18*n^3+143*n^2-486*n+672)/24.
a(n) = sum(A007318(n-k, k), k=0..4), n >= 7. - Johannes W. Meijer, Aug 11 2013

A038795 T(n,n-5), array T as in A038792.

Original entry on oeis.org

1, 6, 17, 33, 55, 89, 144, 232, 370, 581, 895, 1350, 1993, 2881, 4082, 5676, 7756, 10429, 13817, 18058, 23307, 29737, 37540, 46928, 58134, 71413, 87043, 105326, 126589, 151185, 179494, 211924, 248912, 290925, 338461
Offset: 5

Views

Author

Clark Kimberling, May 02 2000

Keywords

Formula

a(n) = sum(binomial(n-k, k), k=0..5), n >= 9. - Johannes W. Meijer, Aug 10 2013

Extensions

a(20) corrected by Johannes W. Meijer, Aug 11 2013

A038796 T(n,n-6), array T as in A038792.

Original entry on oeis.org

1, 7, 23, 50, 88, 144, 233, 377, 609, 979, 1560, 2455, 3805, 5798, 8679, 12761, 18437, 26193, 36622, 50439, 68497, 91804, 121541, 159081, 206009, 264143, 335556, 422599, 527925, 654514, 805699, 985193, 1197117, 1446029, 1736954
Offset: 6

Views

Author

Clark Kimberling, May 02 2000

Keywords

Formula

a(n) = sum(A007318(n-k, k), k=0..6), n >= 11. - Johannes W. Meijer, Aug 11 2013

Extensions

a(31) corrected by Johannes W. Meijer, Aug 11 2013

A038798 T(2n+5,n), array T as in A038792.

Original entry on oeis.org

1, 7, 30, 103, 314, 895, 2455, 6590, 17480, 46070, 121016, 317342, 831465, 2177613, 5702054, 14929365, 39087010, 102332805, 267912735, 701406940, 1836309856, 4807524652, 12586266400, 32951277148, 86267567969, 225851430035
Offset: 0

Views

Author

Clark Kimberling, May 02 2000

Keywords

Crossrefs

Apparently the same as A038739 (except for the offset).
Showing 1-10 of 16 results. Next