A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 5, 4, 4, 1, 1; 8, 8, 5, 5, 1, 1; 13, 12, 12, 6, 6, 1, 1; 21, 21, 17, 17, 7, 7, 1, 1; 34, 33, 33, 23, 23, 8, 8, 1, 1; 55, 55, 50, 50, 30, 30, 9, 9, 1, 1; 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1; ... Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
Links
Crossrefs
Programs
-
Magma
A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >; A054450:= func< n,k | (&+[Abs(A049310(n,j)): j in [k..n]]) >; [A054450(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
A049310[n_, k_]:= A049310[n, k]= If[n<0, 0, If[k==n, 1, A049310[n-1, k-1] - A049310[n-2, k] ]]; A054450[n_, k_]:= A054450[n, k]= Sum[Abs[A049310[n,j]], {j,k,n}]; Table[A054450[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
@CachedFunction def A049310(n, k): if (n<0): return 0 elif (k==n): return 1 else: return A049310(n-1, k-1) - A049310(n-2, k) def A054450(n,k): return sum( abs(A049310(n,j)) for j in (k..n) ) flatten([[A054450(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
Formula
T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)
A054452 Partial sums of A027941(n-1) with a(-1) = 0.
0, 0, 1, 5, 17, 50, 138, 370, 979, 2575, 6755, 17700, 46356, 121380, 317797, 832025, 2178293, 5702870, 14930334, 39088150, 102334135, 267914275, 701408711, 1836311880, 4807526952, 12586269000, 32951280073, 86267571245, 225851433689, 591286729850
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (5th line of Table 1 is a(n-2)).
- A. Shriki and O. Liba, Polygons with Fibonacci Number Coordinates: Problem B-1167, Fib. Quart. 54,2 May 2016, p. 180-181.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,5,-1).
Programs
-
Magma
I:=[0,0,1,5]; [n le 4 select I[n] else 5*Self(n-1)-8*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 26 2015
-
Maple
a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n] := 3*a[n-1]-a[n-2] od: seq(a[n]-n, n=0..27); # Zerinvary Lajos, Mar 20 2008 with(combinat): seq(fibonacci(2*n)-n, n=0..27); # Zerinvary Lajos, Jun 19 2008 g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)-n), n=0..27); # Zerinvary Lajos, Mar 22 2009
-
Mathematica
CoefficientList[Series[x^2 / ((1 - x)^2 (1 - 3 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 26 2015 *)
-
Maxima
makelist(sum(fib(k)*binomial(n+1,k+2),k,0,n),n,0,20); /* Vladimir Kruchinin, Oct 21 2016 */
-
PARI
concat(vector(2), Vec(x^2/((1-x)^2*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Jan 28 2017
-
Sage
[(lucas_number1(n, 3, 1)-lucas_number1(n, 2, 1)) for n in range(1, 28)]# Zerinvary Lajos, Mar 13 2009
Formula
a(n) = +5*a(n-1) -8*a(n-2) +5*a(n-3) -1*a(n-4).
G.f.: x^2/((1-x)^2*(1-3*x+x^2)).
G.f.: x^2*Fibe(x)/(1-x)^2, with Fibe(x) := 1/(1-3*x+x^2) = g.f. A001906(n+1) (Fibonacci numbers F(2(n+1))).
Fourth diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = Sum_{k=0..n-2} binomial(2*n-k-1, k). - Johannes W. Meijer, Aug 12 2013
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} binomial(i+j, i-j). - Wesley Ivan Hurt, Mar 25 2015
a(n) = Sum_{k=0..n} (binomial(n+1,k+2)*Fibonacci(k)). - Vladimir Kruchinin, Oct 21 2016
a(n) = (-((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n)/sqrt(5) - n. - Colin Barker, Jan 28 2017
Extensions
More terms from James Sellers, Apr 28 2000
a(0) added by Arkadiusz Wesolowski, Jun 07 2011
A099572 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).
1, 1, 6, 7, 23, 30, 73, 103, 211, 314, 581, 895, 1560, 2455, 4135, 6590, 10890, 17480, 28590, 46070, 74946, 121016, 196326, 317342, 514123, 831465, 1346148, 2177613, 3524441, 5702054, 9227311, 14929365, 24157645, 39087010, 63245795, 102332805
Offset: 0
Comments
Fifth column of triangle A054450. In general Sum_{k=0..floor(n/2)} binomial(n-k+r, k), r>=0, will have g.f. 1/((1-x^2)^r*(1-x-x^2)) and for r>0, a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+r-1, r-1)*(1+(-1)^k)/2.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-4,-10,6,10,-4,-5,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x^2)^4*(1-x-x^2)) )); // G. C. Greubel, Jul 25 2022 -
Mathematica
Table[Fibonacci(n+5) +(-1)^n*(n^3+9*n^2+35*n+33)/96 -(n^3+21*n^2+155*n+417)/96, {n,0,40}] (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
[fibonacci(n+5) + (-1)^n*(n^3+9*n^2+35*n+33)/96 - (n^3+21*n^2+155*n + 417)/96 for n in (0..40)] # G. C. Greubel, Jul 25 2022
Formula
G.f.: 1/((1-x^2)^4*(1-x-x^2)). - corrected by R. J. Mathar, Feb 20 2011
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+3, 3)*((1+(-1)^k)/2).
a(n) = Fibonacci(n+5) + (-1)^n*(n^3 + 9*n^2 + 35*n + 33)/96 - (n^3 + 21*n^2 + 155*n + 417)/96. - G. C. Greubel, Jul 25 2022
A173284 Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
Offset: 0
Comments
The row sums equal A052952.
Let the triangle = M. Then lim_{n->infinity} M^n = A173285 as a left-shifted vector.
From Johannes W. Meijer, Sep 05 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A104762.
The diagonal sums lead to A004695. (End)
Examples
First few rows of the triangle: 1; 1; 2, 1; 3, 1; 5, 2, 1; 8, 3, 1; 13, 5, 2, 1; 21, 8, 3, 1; 34, 13, 5, 2, 1; 55, 21, 8, 3, 1; 89, 34, 13, 5, 2, 1; 144, 55, 21, 8, 3, 1; 233, 89, 34, 13, 5, 2, 1; 377, 144, 55, 21, 8, 3, 1; 610, 233, 89, 34, 13, 5, 2, 1; ...
Crossrefs
Programs
-
Maple
T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013
Formula
Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
From Johannes W. Meijer, Sep 05 2013: (Start)
T(n,k) = A000045(n-2*k+1), n >= 0 and 0 <= k <= floor(n/2).
T(n,k) = A104762(n-k, k). (End)
Extensions
Term a(15) corrected by Johannes W. Meijer, Sep 05 2013
A058255 Distinct values of lcm_{i=1..n} (p(i)-1), where p() are the primes.
1, 2, 4, 12, 60, 240, 720, 7920, 55440, 1275120, 16576560, 480720240, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400, 532748591575200, 19711697888282400, 59135093664847200
Offset: 1
Keywords
Comments
Examples
For p = 29, 31, 37, 41, 43 these LCMs are equal to 55440 = 11*7! = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28, 30, 36, 40, 42] = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28]. The values was put on the stage only once. Repetitions skipped.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..360
Crossrefs
Programs
-
Mathematica
Union@ Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 38}] (* Michael De Vlieger, Dec 06 2018 *)
A099571 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, k).
1, 1, 5, 6, 17, 23, 50, 73, 138, 211, 370, 581, 979, 1560, 2575, 4135, 6755, 10890, 17700, 28590, 46356, 74946, 121380, 196326, 317797, 514123, 832025, 1346148, 2178293, 3524441, 5702870, 9227311, 14930334, 24157645, 39088150, 63245795
Offset: 0
Comments
Fourth column of triangle A054450.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-6,3,4,-1,-1).
Programs
-
Magma
[Fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16: n in [0..40]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
Table[Sum[Binomial[n-k+3,k],{k,0,Floor[n/2]}],{n,0,40}] (* or *) LinearRecurrence[{1,4,-3,-6,3,4,-1,-1},{1,1,5,6,17,23,50,73},40] (* Harvey P. Dale, Jun 04 2021 *)
-
SageMath
[fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16 for n in (0..40)] # G. C. Greubel, Jul 25 2022
Formula
G.f.: 1/((1-x^2)^3*(1-x-x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 6*a(n-4) + 3*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8);
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2 +2, 2)*(1+(-1)^k)/2.
a(n) = Fibonacci(n+4) + (-1)^n*(n^2 + 4*n + 7)/16 - (n^2 + 12*n + 39)/16. - G. C. Greubel, Jul 25 2022
A099573 Reverse of number triangle A054450.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 5, 1, 1, 5, 5, 8, 8, 1, 1, 6, 6, 12, 12, 13, 1, 1, 7, 7, 17, 17, 21, 21, 1, 1, 8, 8, 23, 23, 33, 33, 34, 1, 1, 9, 9, 30, 30, 50, 50, 55, 55, 1, 1, 10, 10, 38, 38, 73, 73, 88, 88, 89, 1, 1, 11, 11, 47, 47, 103, 103, 138, 138, 144, 144, 1, 1, 12, 12, 57, 57, 141, 141, 211, 211, 232, 232, 233
Offset: 0
Examples
First few rows of the array: 1, 1, 2, 3, 5, 8, ... (A000045) 1, 1, 3, 4, 8, 12, ... (A052952) 1, 1, 4, 5, 12, 17, ... (A054451) 1, 1, 5, 6, 17, 23, ... (A099571) 1, 1, 6, 7, 23, 30, ... (A099572) ... Triangle begins as: 1; 1, 1; 1, 1, 2; 1, 1, 3, 3; 1, 1, 4, 4, 5; 1, 1, 5, 5, 8, 8; 1, 1, 6, 6, 12, 12, 13; 1, 1, 7, 7, 17, 17, 21, 21; 1, 1, 8, 8, 23, 23, 33, 33, 34; 1, 1, 9, 9, 30, 30, 50, 50, 55, 55;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[(&+[Binomial(n-j,j): j in [0..Floor(k/2)]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
T[n_, k_]:= Sum[Binomial[n-j,j], {j,0,Floor[k/2]}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
def A099573(n,k): return sum(binomial(n-j, j) for j in (0..(k//2))) flatten([[A099573(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
Formula
Number triangle T(n, k) = Sum_{j=0..floor(k/2)} binomial(n-j, j) if k <= n, 0 otherwise.
T(n, n) = A000045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099574(n).
Sum_{k=0..n} T(n, k) = A029907(n+1).
Antidiagonals of the following array: the first row equals the Fibonacci numbers, (1, 1, 2, 3, 5, ...), and the (n+1)-st row is obtained by the matrix-vector product A128174 * n-th row. - Gary W. Adamson, Jan 19 2011
From G. C. Greubel, Jul 25 2022: (Start)
T(n, n-1) = A052952(n-1), n >= 1.
T(n, n-2) = A054451(n-2), n >= 2.
T(n, n-3) = A099571(n-3), n >= 3.
T(n, n-4) = A099572(n-4), n >= 4. (End)
A007382 Number of strict (-1)st-order maximal independent sets in path graph.
0, 0, 3, 4, 11, 16, 32, 49, 87, 137, 231, 369, 608, 978, 1595, 2574, 4179, 6754, 10944, 17699, 28655, 46355, 75023, 121379, 196416, 317796, 514227, 832024, 1346267
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.
Links
Crossrefs
Equals A054451(n+1) - 1.
Programs
-
Mathematica
Table[Sum[Binomial[n - i + 1, i], {i, Floor[(n - 1)/2]}], {n, 30}] (* or *) Rest@ Abs@ CoefficientList[Series[x^3*(x^3 + 2 x^2 - x - 3)/((1 - x - x^2) (1 - x^2)^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 19 2017 *)
Formula
John W. Layman observes that if b(n) = 1+A007382(n) then b(n) = b(n-1) + 3b(n-2) - 2b(n-3) - 3b(n-4) + b(n-5) + b(n-6) for all 27 terms shown.
G.f.: x^3*(x^3+2x^2-x-3)/((1-x-x^2)*(1-x^2)^2).
a(n) = Sum_{i=1..floor((n-1)/2)} C(n-i+1, i). - Wesley Ivan Hurt, Sep 19 2017
A058256 a(n) = A058254(n+1)/A058254(n).
2, 2, 3, 5, 1, 4, 3, 11, 7, 1, 1, 1, 1, 23, 13, 29, 1, 1, 1, 1, 1, 41, 1, 2, 5, 17, 53, 3, 1, 1, 1, 1, 1, 37, 1, 1, 3, 83, 43, 89, 1, 19, 2, 7, 1, 1, 1, 113, 1, 1, 1, 1, 5, 4, 131, 67, 1, 1, 1, 47, 73, 1, 31, 1, 79, 1, 1, 173, 1, 1, 179, 61, 1, 1, 191, 97, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Comments
a(n) = 1 if in prime(n+1)-1 no new prime divisor or new power of a prime appear, like LCM[{1, 2, 4, 6, 10, 12, 16, 22}]= LCM[{1, 2, 4, 6, 10, 12, 16, 22, 28}].
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
PARI
f(n) = lcm(apply(p->p-1, primes(n))); \\ A058254 a(n) = f(n+1)/f(n); \\ Michel Marcus, Mar 22 2020
Formula
a(n) = lcm{i=1..n+1} (prime(i)-1) / lcm{i=1..n} (prime(i)-1).
Extensions
Offset corrected by Amiram Eldar, Sep 24 2019
Comments