cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000 and May 08 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1,  1;
   5,  4,  4,  1,  1;
   8,  8,  5,  5,  1,  1;
  13, 12, 12,  6,  6,  1,  1;
  21, 21, 17, 17,  7,  7,  1,  1;
  34, 33, 33, 23, 23,  8,  8,  1,  1;
  55, 55, 50, 50, 30, 30,  9,  9,  1, 1;
  89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
  ...
Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
		

Crossrefs

Programs

Formula

T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
Sum_{k=0..n} T(n, k) = A029907(n) = A054453(n, 0).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)

A054452 Partial sums of A027941(n-1) with a(-1) = 0.

Original entry on oeis.org

0, 0, 1, 5, 17, 50, 138, 370, 979, 2575, 6755, 17700, 46356, 121380, 317797, 832025, 2178293, 5702870, 14930334, 39088150, 102334135, 267914275, 701408711, 1836311880, 4807526952, 12586269000, 32951280073, 86267571245, 225851433689, 591286729850
Offset: 0

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0,1,5]; [n le 4 select I[n] else 5*Self(n-1)-8*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 26 2015
    
  • Maple
    a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n] := 3*a[n-1]-a[n-2] od: seq(a[n]-n, n=0..27); # Zerinvary Lajos, Mar 20 2008
    with(combinat): seq(fibonacci(2*n)-n, n=0..27); # Zerinvary Lajos, Jun 19 2008
    g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)-n), n=0..27); # Zerinvary Lajos, Mar 22 2009
  • Mathematica
    CoefficientList[Series[x^2 / ((1 - x)^2 (1 - 3 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 26 2015 *)
  • Maxima
    makelist(sum(fib(k)*binomial(n+1,k+2),k,0,n),n,0,20); /* Vladimir Kruchinin, Oct 21 2016 */
    
  • PARI
    concat(vector(2), Vec(x^2/((1-x)^2*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Jan 28 2017
  • Sage
    [(lucas_number1(n, 3, 1)-lucas_number1(n, 2, 1)) for n in range(1, 28)]# Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = +5*a(n-1) -8*a(n-2) +5*a(n-3) -1*a(n-4).
G.f.: x^2/((1-x)^2*(1-3*x+x^2)).
a(n) = Sum_{k=0..n} A027941(k-1) = F(2*n)-n = A054450(2*n-1, 2) = A054451(2*n-3).
G.f.: x^2*Fibe(x)/(1-x)^2, with Fibe(x) := 1/(1-3*x+x^2) = g.f. A001906(n+1) (Fibonacci numbers F(2(n+1))).
Fourth diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = Sum_{k=0..n-2} binomial(2*n-k-1, k). - Johannes W. Meijer, Aug 12 2013
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} binomial(i+j, i-j). - Wesley Ivan Hurt, Mar 25 2015
a(n) = Sum_{k=0..n} (binomial(n+1,k+2)*Fibonacci(k)). - Vladimir Kruchinin, Oct 21 2016
a(n) = (-((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n)/sqrt(5) - n. - Colin Barker, Jan 28 2017

Extensions

More terms from James Sellers, Apr 28 2000
a(0) added by Arkadiusz Wesolowski, Jun 07 2011

A099572 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).

Original entry on oeis.org

1, 1, 6, 7, 23, 30, 73, 103, 211, 314, 581, 895, 1560, 2455, 4135, 6590, 10890, 17480, 28590, 46070, 74946, 121016, 196326, 317342, 514123, 831465, 1346148, 2177613, 3524441, 5702054, 9227311, 14929365, 24157645, 39087010, 63245795, 102332805
Offset: 0

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Fifth column of triangle A054450. In general Sum_{k=0..floor(n/2)} binomial(n-k+r, k), r>=0, will have g.f. 1/((1-x^2)^r*(1-x-x^2)) and for r>0, a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+r-1, r-1)*(1+(-1)^k)/2.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x^2)^4*(1-x-x^2)) )); // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    Table[Fibonacci(n+5) +(-1)^n*(n^3+9*n^2+35*n+33)/96 -(n^3+21*n^2+155*n+417)/96, {n,0,40}] (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    [fibonacci(n+5) + (-1)^n*(n^3+9*n^2+35*n+33)/96 - (n^3+21*n^2+155*n + 417)/96 for n in (0..40)] # G. C. Greubel, Jul 25 2022

Formula

G.f.: 1/((1-x^2)^4*(1-x-x^2)). - corrected by R. J. Mathar, Feb 20 2011
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+3, 3)*((1+(-1)^k)/2).
a(n) = Fibonacci(n+5) + (-1)^n*(n^3 + 9*n^2 + 35*n + 33)/96 - (n^3 + 21*n^2 + 155*n + 417)/96. - G. C. Greubel, Jul 25 2022

A173284 Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
Offset: 0

Author

Gary W. Adamson, Feb 14 2010

Keywords

Comments

The row sums equal A052952.
Let the triangle = M. Then lim_{n->infinity} M^n = A173285 as a left-shifted vector.
A173284 * [1, 2, 3, ...] = A054451: (1, 1, 4, 5, 12, 17, 33, ...). - Gary W. Adamson, Mar 03 2010
From Johannes W. Meijer, Sep 05 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A104762.
The diagonal sums lead to A004695. (End)

Examples

			First few rows of the triangle:
    1;
    1;
    2,   1;
    3,   1;
    5,   2,  1;
    8,   3,  1;
   13,   5,  2,  1;
   21,   8,  3,  1;
   34,  13,  5,  2,  1;
   55,  21,  8,  3,  1;
   89,  34, 13,  5,  2, 1;
  144,  55, 21,  8,  3, 1;
  233,  89, 34, 13,  5, 2, 1;
  377, 144, 55, 21,  8, 3, 1;
  610, 233, 89, 34, 13, 5, 2, 1;
  ...
		

Crossrefs

Cf. (Similar triangles) A008315 (Catalan), A011973 (Pascal), A102541 (Losanitsch), A122196 (Fractal), A122197 (Fractal), A128099 (Pell-Jacobsthal), A152198, A152204, A207538, A209634.

Programs

  • Maple
    T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013

Formula

Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
From Johannes W. Meijer, Sep 05 2013: (Start)
T(n,k) = A000045(n-2*k+1), n >= 0 and 0 <= k <= floor(n/2).
T(n,k) = A104762(n-k, k). (End)

Extensions

Term a(15) corrected by Johannes W. Meijer, Sep 05 2013

A058255 Distinct values of lcm_{i=1..n} (p(i)-1), where p() are the primes.

Original entry on oeis.org

1, 2, 4, 12, 60, 240, 720, 7920, 55440, 1275120, 16576560, 480720240, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400, 532748591575200, 19711697888282400, 59135093664847200
Offset: 1

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

The prime A095365(n) is the least prime yielding an LCM of a(n). This sequence and A095365 are related to A095366. - T. D. Noe, Jun 04 2004

Examples

			For p = 29, 31, 37, 41, 43 these LCMs are equal to 55440 = 11*7! = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28, 30, 36, 40, 42] = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28]. The values was put on the stage only once. Repetitions skipped.
		

Crossrefs

A058254 with duplicates removed.
Cf. A095366 (least k > 1 such that k divides 1^n + 2^n + ... + (k-1)^n).

Programs

  • Mathematica
    Union@ Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 38}] (* Michael De Vlieger, Dec 06 2018 *)

A099571 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, k).

Original entry on oeis.org

1, 1, 5, 6, 17, 23, 50, 73, 138, 211, 370, 581, 979, 1560, 2575, 4135, 6755, 10890, 17700, 28590, 46356, 74946, 121380, 196326, 317797, 514123, 832025, 1346148, 2178293, 3524441, 5702870, 9227311, 14930334, 24157645, 39088150, 63245795
Offset: 0

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Fourth column of triangle A054450.

Crossrefs

Programs

  • Magma
    [Fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16: n in [0..40]]; // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    Table[Sum[Binomial[n-k+3,k],{k,0,Floor[n/2]}],{n,0,40}] (* or *) LinearRecurrence[{1,4,-3,-6,3,4,-1,-1},{1,1,5,6,17,23,50,73},40] (* Harvey P. Dale, Jun 04 2021 *)
  • SageMath
    [fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16 for n in (0..40)] # G. C. Greubel, Jul 25 2022

Formula

G.f.: 1/((1-x^2)^3*(1-x-x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 6*a(n-4) + 3*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8);
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2 +2, 2)*(1+(-1)^k)/2.
a(n) = Fibonacci(n+4) + (-1)^n*(n^2 + 4*n + 7)/16 - (n^2 + 12*n + 39)/16. - G. C. Greubel, Jul 25 2022

A099573 Reverse of number triangle A054450.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 5, 1, 1, 5, 5, 8, 8, 1, 1, 6, 6, 12, 12, 13, 1, 1, 7, 7, 17, 17, 21, 21, 1, 1, 8, 8, 23, 23, 33, 33, 34, 1, 1, 9, 9, 30, 30, 50, 50, 55, 55, 1, 1, 10, 10, 38, 38, 73, 73, 88, 88, 89, 1, 1, 11, 11, 47, 47, 103, 103, 138, 138, 144, 144, 1, 1, 12, 12, 57, 57, 141, 141, 211, 211, 232, 232, 233
Offset: 0

Author

Paul Barry, Oct 23 2004

Keywords

Examples

			First few rows of the array:
  1, 1, 2, 3,  5,  8, ... (A000045)
  1, 1, 3, 4,  8, 12, ... (A052952)
  1, 1, 4, 5, 12, 17, ... (A054451)
  1, 1, 5, 6, 17, 23, ... (A099571)
  1, 1, 6, 7, 23, 30, ... (A099572)
  ...
Triangle begins as:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 3, 3;
  1, 1, 4, 4,  5;
  1, 1, 5, 5,  8,  8;
  1, 1, 6, 6, 12, 12, 13;
  1, 1, 7, 7, 17, 17, 21, 21;
  1, 1, 8, 8, 23, 23, 33, 33, 34;
  1, 1, 9, 9, 30, 30, 50, 50, 55, 55;
		

Crossrefs

Cf. A099571, A099572, A099574 (diagonal sums), A099575.

Programs

  • Magma
    [(&+[Binomial(n-j,j): j in [0..Floor(k/2)]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[n-j,j], {j,0,Floor[k/2]}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    def A099573(n,k): return sum(binomial(n-j, j) for j in (0..(k//2)))
    flatten([[A099573(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022

Formula

Number triangle T(n, k) = Sum_{j=0..floor(k/2)} binomial(n-j, j) if k <= n, 0 otherwise.
T(n, n) = A000045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099574(n).
Sum_{k=0..n} T(n, k) = A029907(n+1).
Antidiagonals of the following array: the first row equals the Fibonacci numbers, (1, 1, 2, 3, 5, ...), and the (n+1)-st row is obtained by the matrix-vector product A128174 * n-th row. - Gary W. Adamson, Jan 19 2011
From G. C. Greubel, Jul 25 2022: (Start)
T(n, n-1) = A052952(n-1), n >= 1.
T(n, n-2) = A054451(n-2), n >= 2.
T(n, n-3) = A099571(n-3), n >= 3.
T(n, n-4) = A099572(n-4), n >= 4. (End)

A007382 Number of strict (-1)st-order maximal independent sets in path graph.

Original entry on oeis.org

0, 0, 3, 4, 11, 16, 32, 49, 87, 137, 231, 369, 608, 978, 1595, 2574, 4179, 6754, 10944, 17699, 28655, 46355, 75023, 121379, 196416, 317796, 514227, 832024, 1346267
Offset: 1

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.

Crossrefs

Equals A054451(n+1) - 1.

Programs

  • Mathematica
    Table[Sum[Binomial[n - i + 1, i], {i, Floor[(n - 1)/2]}], {n, 30}] (* or *)
    Rest@ Abs@ CoefficientList[Series[x^3*(x^3 + 2 x^2 - x - 3)/((1 - x - x^2) (1 - x^2)^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 19 2017 *)

Formula

John W. Layman observes that if b(n) = 1+A007382(n) then b(n) = b(n-1) + 3b(n-2) - 2b(n-3) - 3b(n-4) + b(n-5) + b(n-6) for all 27 terms shown.
G.f.: x^3*(x^3+2x^2-x-3)/((1-x-x^2)*(1-x^2)^2).
a(n) = Sum_{i=1..floor((n-1)/2)} C(n-i+1, i). - Wesley Ivan Hurt, Sep 19 2017

A058256 a(n) = A058254(n+1)/A058254(n).

Original entry on oeis.org

2, 2, 3, 5, 1, 4, 3, 11, 7, 1, 1, 1, 1, 23, 13, 29, 1, 1, 1, 1, 1, 41, 1, 2, 5, 17, 53, 3, 1, 1, 1, 1, 1, 37, 1, 1, 3, 83, 43, 89, 1, 19, 2, 7, 1, 1, 1, 113, 1, 1, 1, 1, 5, 4, 131, 67, 1, 1, 1, 47, 73, 1, 31, 1, 79, 1, 1, 173, 1, 1, 179, 61, 1, 1, 191, 97, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

a(n) = 1 if in prime(n+1)-1 no new prime divisor or new power of a prime appear, like LCM[{1, 2, 4, 6, 10, 12, 16, 22}]= LCM[{1, 2, 4, 6, 10, 12, 16, 22, 28}].
a(n) > 1 if in prime(n+1)-1 new prime divisor(s) or new power(s) of a prime arise, like in A058254(15) compared with A058254(14), where the new prime divisor is 23 only, so a(14)=23. Such sites of increase do not correspond to the natural order of primes and prime-powers like in A054451.

Programs

  • PARI
    f(n) = lcm(apply(p->p-1, primes(n))); \\ A058254
    a(n) = f(n+1)/f(n); \\ Michel Marcus, Mar 22 2020

Formula

a(n) = lcm{i=1..n+1} (prime(i)-1) / lcm{i=1..n} (prime(i)-1).

Extensions

Offset corrected by Amiram Eldar, Sep 24 2019
Showing 1-9 of 9 results.