cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134512 Row sums of triangle A134511.

Original entry on oeis.org

1, 1, 3, 4, 10, 14, 32, 46, 99, 145, 299, 444, 887, 1331, 2595, 3926, 7508, 11434, 21526, 32960, 61251, 94211, 173173, 267384, 486925, 754309, 1362627, 2116936, 3797374, 5914310, 10543724, 16458034, 29180067, 45638101, 80521055, 126159156, 221610563, 347769719, 608468451, 956238170, 1667040776
Offset: 0

Views

Author

Gary W. Adamson, Oct 28 2007

Keywords

Examples

			a(4) = 10 = sum of row 4 terms of triangle A134511: (5 + 0 + 4 + 0 + 1).
		

Crossrefs

Cf. A134511.

Programs

  • Maple
    N:= 100: # for the first N terms
    T128174:= Matrix(N, N, (i, j) -> `if`(j<=i, (i-j+1) mod 2, 0)):
    T049310:= Matrix(N, N):
    for i from 1 to N do
         P:= orthopoly[U](i-1, x/2);
         for j from 1 to i do
           T049310[i, j]:= abs(coeff(P, x, j-1))
         od
    od:
    convert(T049310 . (T128174 . Vector(N,1)),list); # Robert Israel, Mar 02 2018

Formula

Empirical g.f.: (1-x^2)^2/((1+x-x^2)*(1-x-x^2)^2). - Robert Israel, Mar 02 2018

Extensions

More terms from Robert Israel, Mar 02 2018

A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ...

Original entry on oeis.org

1, 3, 6, 18, 36, 108, 216, 648, 1296, 3888, 7776, 23328, 46656, 139968, 279936, 839808, 1679616, 5038848, 10077696, 30233088, 60466176, 181398528, 362797056, 1088391168, 2176782336, 6530347008, 13060694016, 39182082048, 78364164096, 235092492288, 470184984576
Offset: 1

Views

Author

Keywords

Comments

Preface the series with a 1: (1, 1, 3, 6, 18, 36, ...); then the next term in the series = (1, 1, 3, 6, ...) dot (1, 2, 1, 2, ...). Example: 36 = (1, 1, 3, 6, 18) dot (1, 2, 1, 2, 1) = (1 + 2 + 3 + 12 + 18). - Gary W. Adamson, Apr 18 2009
Partial products of A176059. - Reinhard Zumkeller, Apr 04 2012

Crossrefs

Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences.

Programs

  • Haskell
    a026532 n = a026532_list !! (n-1)
    a026532_list = scanl (*) 1 $ a176059_list
    -- Reinhard Zumkeller, Apr 04 2012
    
  • Magma
    [(1/4)*(3-(-1)^n)*6^Floor(n/2) : n in [1..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Mathematica
    FoldList[(2 + Boole[EvenQ@ #2]) #1 &, Range@ 28] (* or *)
    CoefficientList[Series[x*(1+3x)/(1-6x^2), {x,0,31}], x] (* Michael De Vlieger, Aug 02 2017 *)
    LinearRecurrence[{0,6},{1,3},30] (* Harvey P. Dale, Jul 11 2018 *)
  • PARI
    a(n)=if(n%2,3,1)*6^(n\2) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Python
    def a(n): return (3 if n%2 else 1)*6**(n//2)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 02 2017
    
  • Sage
    [(1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) for n in (1..30)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = T(n, 0) + T(n, 1) + ... + T(n, 2n-2), T given by A026519.
From Benoit Cloitre, Nov 14 2003: (Start)
a(n) = (1/2)*(5+(-1)^n)*a(n-1) for n>1, a(1) = 1.
a(n) = (1/4)*(3-(-1)^n)*6^floor(n/2). (End)
From Ralf Stephan, Feb 03 2004: (Start)
G.f.: x*(1+3*x)/(1-6*x^2).
a(n+2) = 6*a(n). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)). - G. C. Greubel, Dec 21 2021
Sum_{n>=1} 1/a(n) = 8/5. - Amiram Eldar, Feb 13 2023

Extensions

New definition from Ralf Stephan, Dec 01 2004
Offset changed from 0 to 1 by Vincenzo Librandi, Jun 08 2011

A038792 Rectangular array defined by T(i,1) = T(1,j) = 1 for i >= 1 and j >= 1; T(i,j) = max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)) for i >= 2, j >= 2, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 8, 8, 5, 1, 1, 6, 12, 13, 12, 6, 1, 1, 7, 17, 21, 21, 17, 7, 1, 1, 8, 23, 33, 34, 33, 23, 8, 1, 1, 9, 30, 50, 55, 55, 50, 30, 9, 1, 1, 10, 38, 73, 88, 89, 88, 73, 38, 10, 1, 1, 11, 47, 103, 138, 144, 144, 138, 103, 47, 11, 1
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

Antidiagonal sums: A029907.
Main diagonal: A001519 (odd-indexed Fibonacci numbers).
Next diagonal: A001906 (even-indexed Fibonacci numbers).

Examples

			From _Clark Kimberling_, Jun 20 2011: (Start)
Northwest corner begins at (i,j) = (1,1):
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   2,   3,   4,   5,   6,   7,   8, ...
  1,   3,   5,   8,  12,  17,  23,  30, ...
  1,   4,   8,  13,  21,  33,  50,  73, ...
  1,   5,  12,  21,  34,  55,  88, 138, ...
  1,   6,  17,  33,  55,  89, 144, 232, ...
  1,   7,  23,  50,  88, 144, 233, 377, ...
(End)
Antidiagonal triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  5,  4,  1;
  1, 5,  8,  8,  5,  1;
  1, 6, 12, 13, 12,  6,  1;
  1, 7, 17, 21, 21, 17,  7,  1;
  1, 8, 23, 33, 34, 33, 23,  8, 1;
  1, 9, 30, 50, 55, 55, 50, 30, 9, 1;
		

Crossrefs

Main diagonal gives A001519.

Programs

  • Magma
    function t(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return Max(t(n-1,k-1) + t(n-1,k), t(n-1,k-1) + t(n,k-1));
      end if; return t;
    end function;
    T:= func< n,k | t(n-k, k-1) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
    
  • Maple
    G := x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)); G := convert(series(G, x=0, 11),polynom):
    for i from 1 to 10 do series(coeff(G,x,i),y=0,11) od; # Mark van Hoeij, Nov 09 2011
    # second Maple program:
    G:= x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)):
    T:= (i, j)-> coeff(series(coeff(series(G, y, j+1), y, j), x, i+1), x, i):
    seq(seq(T(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Sep 02 2019
    # third Maple program:
    T:= proc(i,j) option remember; `if`(i=1 or j=1, 1,
          max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)))
        end:
    seq(seq(T(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Sep 02 2019
  • Mathematica
    f[i_, 0]:= 1; f[0, i_]:= 1
    f[i_, j_]:= f[i,j]= Max[f[i-1,j] +f[i-1,j-1], f[i-1,j-1] +f[i,j-1]];
    T[i_, j_]:= f[i-j, j-1];
    TableForm[Table[f[i, j], {i,0,7}, {j,0,7}]]
    Table[T[i, j], {i,10}, {j,i}]//Flatten (* modified by G. C. Greubel, Apr 05 2022 *)
  • SageMath
    def t(n,k):
        if (k==0 or n==0): return 1
        else: return max(t(n-1,k-1) + t(n-1,k), t(n-1,k-1) + t(n,k-1))
    def A038792(n,k): return t(n-k, k-1)
    flatten([[A038792(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022

Formula

G.f.: x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)). - Mark van Hoeij, Nov 09 2011
From Petros Hadjicostas, Sep 02 2019: (Start)
Following Dil and Mezo (2008), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2).
Then T(i, j) = F(i+j-1, min(i-1, j-1)) for i,j >= 1.
(End)

Extensions

New description from Benoit Cloitre, Aug 05 2003
Updated from pre-2003 triangular format to present rectangular, from Clark Kimberling, Jun 20 2011

A038730 Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 12, 13, 1, 8, 23, 33, 34, 1, 10, 38, 73, 88, 89, 1, 12, 57, 141, 211, 232, 233, 1, 14, 80, 245, 455, 581, 609, 610, 1, 16, 107, 393, 888, 1350, 1560, 1596, 1597, 1, 18, 138, 593, 1594, 2881, 3805, 4135, 4180, 4181
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Examples

			Triangle T(i,j) begins as follows:
  1;
  1,  2;
  1,  4,  5;
  1,  6, 12,  13;
  1,  8, 23,  33,  34;
  1, 10, 38,  73,  88,  89;
  1, 12, 57, 141, 211, 232, 233;
  ... [edited by _Petros Hadjicostas_, Sep 02 2019]
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j-2, j): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
    
  • Maple
    t:= proc(i, j) option remember; `if`(i=1 or j=1, 1,
          max(t(i-1, j)+t(i-1, j-1), t(i-1, j-1)+t(i, j-1)))
        end:
    T:= (i, j)-> t(2*i-j, j):
    seq(seq(T(i, j), j=1..i), i=1..10);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    T[i_, j_]:= Sum[Binomial[2i-k-2, k], {k,0,j-1}];
    Table[T[i, j], {i, 1, 10}, {j, 1, i}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
  • SageMath
    def A038730(n,k): return sum( binomial(2*n-j-2, j) for j in (0..k-1))
    flatten([[A038730(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022

Formula

T(n, n) = A001519(n) for n >= 1 (odd-indexed Fibonacci numbers).
From Petros Hadjicostas, Sep 03 2019: (Start)
Following Dil and Mezo (2008, p. 944), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2). Then T(i, j) = F(2*i-1, j-1) for 1 <= j <= i.
G.f. for column j: Define g(t,j) = ((1+t)^j * (1+t-t^2) + (1-t)^j * (1-t-t^2))/2, which is a function of t^2. Then the g.f. for column j is Sum_{i >= j} T(i,j)*x^i = x^j * (Fibonacci(2*j-1) * (1-x)^(j+1) + Fibonacci(2*j-2) * x * (1-x)^j - x * g(sqrt(x), j)) / ((1-x)^j * (1-3*x+x^2)). This follows from the results in Pintér and Srivastava (1999).
(End)

A137176 Hyperlucas number array T(r,n) = L(n)^(r), read by ascending antidiagonals (r >= 0, n >= 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 4, 0, 1, 5, 8, 7, 0, 1, 6, 13, 15, 11, 0, 1, 7, 19, 28, 26, 18, 0, 1, 8, 26, 47, 54, 44, 29, 0, 1, 9, 34, 73, 101, 98, 73, 47, 0, 1, 10, 43, 107, 174, 199, 171, 120, 76, 0, 1, 11, 53, 150, 281, 373, 370, 291, 196, 123
Offset: 0

Views

Author

Jonathan Vos Post, Apr 04 2008

Keywords

Comments

In Theorem 17, Dil and Mezo (2008) connect the hyperlucas numbers (this array) with the incomplete Lucas numbers (A324242). - Petros Hadjicostas, Sep 03 2019

Examples

			The array T(r,n) = L(n)^(r) begins:
.....|n=0|n=1|.n=2|.n=3|.n=4.|.n=5.|..n=6.|.n=7..|..n=8..|..n=9..|.n=10..|.in.OEIS
r=0..|.0.|.1.|..3.|..4.|...7.|..11.|...18.|...29.|....47.|....76.|...123.|.A000204
r=1..|.0.|.1.|..4.|..8.|..15.|..26.|...44.|...73.|...120.|...196.|...319.|.A027961
r=2..|.0.|.1.|..5.|.13.|..28.|..54.|...98.|..171.|...291.|...487.|...806.|.A023537
r=3..|.0.|.1.|..6.|.19.|..47.|.101.|..199.|..370.|...661.|..1148.|..1954.|.A027963
r=4..|.0.|.1.|..7.|.26.|..73.|.174.|..373.|..743.|..1404.|..2552.|..4506.|.A027964
r=5..|.0.|.1.|..8.|.34.|.107.|.281.|..654.|.1397.|..2801.|..5353.|..9859.|.A053298
r=6..|.0.|.1.|..9.|.43.|.150.|.431.|.1085.|.2482.|..5283.|.10636.|.20495.|.new
r=7..|.0.|.1.|.10.|.53.|.203.|.634.|.1719.|.4201.|..9484.|.20120.|.40615.|.new
r=8..|.0.|.1.|.11.|.64.|.267.|.901.|.2620.|.6821.|.16305.|.36425.|.77040.|.new
r=9..|.0.|.1.|.12.|.76.|.343.|1244.|.3864.|10685.|.26990.|.63415.|140455.|.new
For example, T(4,5) = L(5)^(4) = L(0)^(3) + L(1)^(3) + L(2)^(3) + L(3)^(3) + L(4)^(3) + L(5)^(3) = 0 + 1 + 6 + 19 + 47 + 101 = 174. - _Petros Hadjicostas_, Sep 03 2019
		

Crossrefs

Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences.

Programs

  • Maple
    L:= proc(r, n) option remember; `if`(n=0, 0, `if`(r=0,
          `if`(n<3, 2*n-1, L(0, n-2)+L(0, n-1)), L(r-1, n)+L(r, n-1)))
        end:
    seq(seq(L(d-n, n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    L[r_, n_] := L[r, n] = If[n == 0, 0, If[r == 0, If[n < 3, 2n-1, L[0, n-2] + L[0, n-1]], L[r-1, n] + L[r, n-1]]];
    Table[L[d-n, n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)

Formula

T(r,n) = L(n)^(r) = Apply partial sum operator r times to Lucas numbers A000204.
From Petros Hadjicostas, Sep 03 2019: (Start)
T(r, n) = L(n)^(r) = Sum_{k = 0..n} L(k)^(r-1) for r >= 1, with T(0,n) = L(n)^(0) = L(n) = A000204(n), T(r,0) = L(0)^(r) = 0, and T(r,1) = L(1)^(r) = 1. (See Definition 13 in Dil and Mezo (2008).)
G.f. for row r: Sum_{n >= 0} L(n)^(r)*t^n = t * (1+2*t)/((1-t-t^2) * (1-t)^r). (Corrected from Proposition 14 in Dil and Mezo (2008).)
(End)

A324242 Incomplete Lucas numbers: irregular triangular array L(n,k) = Sum_{j = 0..k} (n/(n-j)) * binomial(n-j, j), read by rows, with n >= 1 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 5, 7, 1, 6, 11, 1, 7, 16, 18, 1, 8, 22, 29, 1, 9, 29, 45, 47, 1, 10, 37, 67, 76, 1, 11, 46, 96, 121, 123, 1, 12, 56, 133, 188, 199, 1, 13, 67, 179, 284, 320, 322, 1, 14, 79, 235, 417, 508, 521, 1, 15, 92, 302, 596, 792, 841, 843, 1, 16, 106, 381, 831, 1209, 1349, 1364
Offset: 1

Views

Author

Petros Hadjicostas, Sep 02 2019

Keywords

Comments

For additional properties of the incomplete Lucas numbers and special cases not listed here, see Filipponi (1996, pp. 45-53).

Examples

			Triangle L(n,k) (with rows n >= 1 and columns k >= 0) begins as follows:
  1;
  1,  3;
  1,  4;
  1,  5,  7;
  1,  6, 11;
  1,  7, 16,  18;
  1,  8, 22,  29;
  1,  9, 29,  45,  47;
  1, 10, 37,  67,  76;
  1, 11, 46,  96, 121, 123;
  1, 12, 56, 133, 188, 199;
  ...
Row sums are 1, 4, 5, 13, 18, 42, 60, 131, 191, 398, 589, 1186, 1775, 3482, 5257, 10103, 15360, ...
		

Crossrefs

Cf. A038730, A038792, and A134511 for various versions of the incomplete Fibonacci numbers.

Programs

  • Mathematica
    Flatten[Table[Sum[(n/(n-j))*Binomial[n-j, j],{j,0,k}],{n,1,15},{k,0,Floor[n/2]}]] (* Stefano Spezia, Sep 03 2019 *)

Formula

L(n,k) = F(n-1, k-1) + F(n+1, k) for n >= 1 and 0 <= k <= floor(n/2), where F(n,k) = Sum_{j = 0..k} binomial(n-1-j, j) are the incomplete Fibonacci numbers (defined for n >= 1 and 0 <= k <= floor((n-1)/2)).
L(n+2, k+1) = L(n+1, k+1) + L(n,k) for n >= 1 and 0 <= k <= floor((n-1)/2).
L(n,k) = F(n+2,k) - F(n-2, k-2) for n >= 3 and 2 <= k <= floor((n+1)/2).
Special cases: L(n,0) = 1 (n >= 1), L(n,1) = n+1 (n >= 2), L(n,2) = (n^2-n+2)/2 = A000124(n-1) (n >= 4), and L(n, floor(n/2)) = A000204(n) (n >= 1).
Sum of row n = (3 + (-1)^n)*A000204(n)/4 + n*A000045(n)/2.
G.f. for column k >= 1: t^(2*k)*((A000204(2*k) + t*A000204(2*k-1))*(1-t)^(k+1) - t^2*(2-t))/((1-t)^(k+1) * (1-t-t^2)).

A038736 T(3*n + 1, n + 1), array T as in A038792.

Original entry on oeis.org

1, 4, 23, 141, 888, 5676, 36622, 237821, 1551727, 10161409, 66732392, 439267525, 2897064773, 19137833146, 126599140313, 838477244705, 5559158604616, 36891869005316, 245025744759152, 1628602268643928, 10832010390274304, 72088640151558145, 480026332241373281, 3198037386794785777, 21315944308822771118
Offset: 0

Views

Author

Clark Kimberling, May 02 2000

Keywords

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)*hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4)):
    seq(simplify(a(n)), n = 0..24); # Peter Luschny, Sep 04 2019

Formula

G.f.: (g-1)^2/((1-3*g)*(g^2-3*g+1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
a(n) = A134511(4n,2n). - Alois P. Heinz, Mar 02 2018
a(n) = Sum_{j=0..n} binomial(4*n-j, j). - Petros Hadjicostas, Sep 04 2019
a(n) = hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)* hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4) for n > 0. - Peter Luschny, Sep 04 2019
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - Vaclav Kotesovec, Sep 04 2019
Showing 1-7 of 7 results.