cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A329114 a(n) = floor(A026532(n)/5).

Original entry on oeis.org

0, 0, 1, 3, 7, 21, 43, 129, 259, 777, 1555, 4665, 9331, 27993, 55987, 167961, 335923, 1007769, 2015539, 6046617, 12093235, 36279705, 72559411, 217678233, 435356467, 1306069401, 2612138803, 7836416409, 15672832819, 47018498457, 94036996915, 282110990745
Offset: 1

Views

Author

Clark Kimberling, Nov 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    s[1] = 1; s[n_] := If[IntegerQ[n/2], 3*s[n - 1], 2*s[n - 1]]
    Table[s[n], {n, 1, 20}] (* A026549 *)
    Table[Floor[s[n]/5], {n, 1, 50}] (* A329114 *)

Formula

a(n+1) = 3*a(n) if n is odd, a(n+1) = 2*a(n)+1 if n is even.
a(n) = f(3^f(n/2) * 2^f((n-1)/2) / 5), where f = floor.
G.f.: (x^2 (1 + 3 x))/((-1 + x) (1 + x) (-1 + 6 x^2)).
a(n) = 7*a(n-2) - 6*a(n-4).

A026530 a(n) = T(n, floor(n/2)), T given by A026519.

Original entry on oeis.org

1, 1, 1, 2, 5, 8, 16, 28, 65, 111, 251, 436, 1016, 1763, 4117, 7176, 16913, 29521, 69865, 122182, 290455, 508595, 1212905, 2126312, 5085224, 8923136, 21389824, 37563930, 90226449, 158563368, 381519416, 670893296, 1616684241, 2844444761
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[n, Floor[n/2]] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n, n//2) for n in (0..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = A026519(n, floor(n/2)).

A026534 a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).

Original entry on oeis.org

1, 4, 10, 28, 64, 172, 388, 1036, 2332, 6220, 13996, 37324, 83980, 223948, 503884, 1343692, 3023308, 8062156, 18139852, 48372940, 108839116, 290237644, 653034700, 1741425868, 3918208204, 10448555212, 23509249228, 62691331276
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else Self(n-1) +6*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Dec 20 2021
    
  • Mathematica
    LinearRecurrence[{1,6,-6}, {1,4,10}, 40] (* G. C. Greubel, Dec 20 2021 *)
  • PARI
    Vec((1+3*x)/((1-x)*(1-6*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
  • Sage
    @CachedFunction
    def T(n, k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( sum( T(j,i) for i in (0..2*n) ) for j in (0..n-1) )
    [a(n) for n in (1..40)]
    

Formula

a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
G.f.: x*(1+3*x)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = (1/60)*( 6^((n+1)/2)*( (4*sqrt(6) - 9)*(-1)^n + (4*sqrt(6) + 9) ) - 48 ). - G. C. Greubel, Dec 20 2021

A176059 Periodic sequence: Repeat 3, 2.

Original entry on oeis.org

3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Interleaving of A010701 and A007395.
Also continued fraction expansion of (3+sqrt(15))/2.
Also decimal expansion of 32/99.
a(n) = A010693(n+1).
Essentially first differences of A047218.
Binomial transform of 3 followed by -A122803.
Inverse binomial transform of 3 followed by A020714.
Second inverse binomial transform of A057198 without initial term 1.

Crossrefs

Cf. A010701 (all 3's sequence), A007395 (all 2's sequence), A176058 (decimal expansion of (3+sqrt(15))/2), A010693 (repeat 2, 3), A047218 (congruent to {0, 3} mod 5), A122803 (powers of -2), A020714 (5*2^n), A057198 ((5*3^(n-1)+1)/2, n > 0).
Cf. A026532 (partial products).

Programs

Formula

a(n) = (5+(-1)^n)/2.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 2.
a(n) = -a(n-1)+5 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+2*(n mod 2).
G.f.: (3+2*x)/((1-x)*(1+x)).
E.g.f.: 3*cosh(x) + 2*sinh(x). - Stefano Spezia, Aug 04 2025

A027262 a(n) = self-convolution of row n of array T given by A026519.

Original entry on oeis.org

1, 3, 8, 58, 196, 1608, 5774, 48924, 180772, 1553940, 5837908, 50618184, 192239854, 1676640462, 6416509142, 56201554888, 216309089956, 1900789437276, 7347943049432, 64734185205960, 251119894730596, 2216888144737508, 8624336421678788, 76265067399850848, 297394187356638766
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n,k]*T[n,2*n-k], {k,0,2*n}] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,2*n-k) for k in (0..2*n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 22 2021

Formula

a(n) = Sum_{k=0..2*n} A026519(n, k)*A026519(n, 2*n-k).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027263 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026519.

Original entry on oeis.org

2, 6, 52, 180, 1516, 5502, 46936, 174456, 1504432, 5673140, 49288856, 187675644, 1639174304, 6284986554, 55108565584, 212408191568, 1868067054968, 7229648901024, 63734526307552, 247468885359240, 2185849699156352, 8510025522045036, 75288454939134992, 293772371437293720
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}] ];
    Table[a[n], {n, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+1) for k in (0..2*n-1) )
    [a(n) for n in (1..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-1} A026519(n,k) * A026519(n,k+1).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027264 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026519.

Original entry on oeis.org

5, 40, 150, 1279, 4797, 41462, 156900, 1365014, 5205950, 45501743, 174609162, 1531614109, 5906040623, 51952990090, 201114700568, 1773182087440, 6885880226784, 60825762159338, 236826459554380, 2095280066101886, 8175978023317170, 72432026278468535, 283166067626865540
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}] ];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+2) for k in (0..2*n-2) )
    [a(n) for n in (2..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-2} A026519(n,k) * A026519(n,k+2).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027265 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026519.

Original entry on oeis.org

24, 104, 954, 3786, 33648, 131264, 1159844, 4508580, 39809076, 154773696, 1367463642, 5323519838, 47082494816, 183586707648, 1625447736120, 6348284151024, 56265306436584, 220081449149440, 1952476424575980, 7647723960962932, 67907006619888744, 266322435212031984
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}] ];
    Table[a[n], {n, 3, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+3) for k in (0..2*n-3) )
    [a(n) for n in (3..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-3} A026519(n,k) * A026519(n,k+3).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027266 a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).

Original entry on oeis.org

1, 6, 18, 72, 180, 648, 1512, 5184, 11664, 38880, 85536, 279936, 606528, 1959552, 4199040, 13436928, 28553472, 90699264, 191476224, 604661760, 1269789696, 3990767616, 8344332288, 26121388032, 54419558400, 169789022208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,6,18,72]; [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 21 2021
    
  • Mathematica
    CoefficientList[Series[(1+6x+6x^2)/(1-6x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{0,12,0,-36},{1,6,18,72},30] (* Harvey P. Dale, Jun 19 2015 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;18;72])[1,1] \\ Charles R Greathouse IV, Oct 18 2022
  • Sage
    [((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ) for n in (0..40)] # G. C. Greubel, Dec 21 2021
    

Formula

a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).
G.f.: (1+6*x+6*x^2)/(1-6*x^2)^2.
a(n) = 12*a(n-2) - 36*a(n-4), with a(0)=1, a(1)=6, a(2)=18, a(3)=72. - Harvey P. Dale, Jun 19 2015
a(n) = ((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ). - G. C. Greubel, Dec 21 2021

A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...

Original entry on oeis.org

1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
Offset: 0

Views

Author

Keywords

Comments

Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - Vladeta Jovovic, Dec 15 2003
Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - Gary W. Adamson, Aug 02 2010
Partial products of A010693. - Reinhard Zumkeller, Mar 29 2012
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - Robert Israel, Aug 06 2024

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - _Michael Somos_, Apr 09 2022
		

References

  • Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.

Crossrefs

Programs

  • Haskell
    a026549 n = a026549_list !! n
    a026549_list = scanl (*) 1 $ a010693_list
    -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    seq(seq(2^i*3^j, i=j..j+1),j=0..30); # Robert Israel, Aug 06 2024
  • Mathematica
    LinearRecurrence[{0,6},{1,2},30] (* Harvey P. Dale, May 29 2016 *)
  • PARI
    {a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
  • SageMath
    [(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
    

Formula

Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023

Extensions

New definition from Ralf Stephan, Dec 01 2004
Showing 1-10 of 20 results. Next