cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A195739 Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 0, 1, 17, 32, 0, 1, 61, 348, 400, 0, 1, 214, 2836, 8640, 6912, 0, 1, 758, 21225, 129288, 254800, 153664, 0, 1, 2723, 154741, 1688424, 6160640, 8749056, 4194304, 0, 1, 9908, 1123143, 20762073, 125055400, 313921008, 343901376, 136048896
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2011

Keywords

Comments

According to Barequet-Barequet-Rote, p. 261, the value DX(7, 6) = 134209 given by W. F. Lunnon is incorrect; it should be 153664, see A127670. - Alexander Knapp, May 13 2013

Examples

			Triangle begins with DX(1,0):
n\d 0  1   2     3      4      5      6
---------------------------------------
1...1
2...0  1
3...0  1   4
4...0  1  17    32
5...0  1  61   348    400
6...0  1 214  2836   8640   6912
7...0  1 758 21225 129288 254800 153664
...
		

Crossrefs

Columns give A006762, A006763, A006764. Cf. A195738, A049430.
Diagonals (with formulas) are A127670, A171860, A191092, A259015, A290738.

A355053 Number of unoriented multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

1, 11, 77, 412, 2009, 8869, 36988, 146578, 560498, 2078927, 7530385, 26734692, 93360884, 321454484, 1093599885, 3681897625, 12284317088, 40660245162, 133638662066, 436488290069, 1417680926923, 4581355626106
Offset: 4

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). For unoriented polyominoes, chiral pairs are counted as one.

Examples

			a(4)=1 as there is only one tetromino in one-space. a(5)=11 because there are 5 achiral and 6 chiral pairs of pentominoes in 2-space, excluding the 1-D straight pentomino.
		

Crossrefs

Cf. A355052 (oriented), A355054 (chiral), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A000081 (rooted trees), A049430 (Lunnon's DE).
Other dimensions: A036364 (n-2), A000055 (n-1), A355048 (orthoplex).

Programs

  • Mathematica
    sb[n_,k_]:= sb[n,k] = b[n+1-k,1] + If[n<2k, 0, sb[n-k,k]];
    b[1,1] := 1; b[n_,1] := b[n,1] = Sum[b[i,1]sb[n-1,i]i,{i,1,n-1}]/(n-1);
    b[n_,k_] := b[n,k] = Sum[b[i,1]b[n-i,k-1],{i,1,n-1}];
    nmax = 30; B[x_] := Sum[b[i,1]x^i,{i,0,nmax}]
    Drop[CoefficientList[Series[(50B[x]^6+3B[x]^7+30B[x]^2B[x^2]^2+3B[x]^3B[x^2](6+B[x^2])+3B[x]^5(37+2B[x^2])+12B[x]^4(1+3B[x^2])+B[x](57B[x^2]^2+6B[x^2]^3+6B[x^4]+6B[x^2]B[x^4])+4(3B[x^2]^2+11B[x^2]^3+B[x^3]^2+B[x^6]))/24+B[x]^2(112B[x]^5+9B[x]^6+3B[x^2]^2+4B[x]B[x^2]^2+B[x]^2B[x^2](14+B[x^2])+8B[x]^3(1+4B[x^2])+B[x]^4(167+10B[x^2]))/(8(1-B[x]))+B[x]^5(46B[x]^3+6B[x]^4+3B[x^2]+B[x]^2(67+2B[x^2])+B[x](2+6B[x^2]))/(2(1-B[x])^2)+B[x]^6(153B[x]^2+75B[x]^3+12B[x]^4+3B[x^2]+B[x](4+3B[x^2]))/(6(1-B[x])^3)+B[x]^9(21+4B[x])/(2(1-B[x])^4)+3B[x]^10/(2(1-B[x])^5)+B[x^2](6B[x]^3B[x^2]+2B[x]^4B[x^2]+13B[x^2]^2+19B[x^2]^3+2B[x]^2B[x^2](1+3B[x^2])+B[x^4]+B[x^2]B[x^4]+B[x](35B[x^2]^2+5B[x^2]^3+B[x^4]+B[x^2]B[x^4]))/(4(1-B[x^2]))+B[x^2]^4(5+3B[x^2]+B[x](8+B[x^2]))/(1-B[x^2])^2+2B[x^2]^5(1+B[x])/(1-B[x^2])^3+2B[x]B[x^3]^2/(6(1-B[x^3]))+B[x]B[x^4]^2/(2(1-B[x^4]))+B[x]^2B[x^2]^2(7B[x]^2+5B[x]^3+3B[x^2]+B[x](2+B[x^2]))/(2(1-B[x])(1-B[x^2]))+B[x]^5B[x^2]^2(3+2B[x])/((1-B[x])^2(1-B[x^2]))+B[x]^6B[x^2]^2/((1-B[x])^3(1-B[x^2]))+B[x]^2B[x^2]^4/((1-B[x])(1-B[x^2])^2)+B[x^2]B[x^4]^2(1+B[x])/(2(1-B[x^2])(1-B[x^4])),{x,0,nmax}],x],4]

Formula

a(n) = A355052(n) - A355054(n) = (A355052(n) + A355055(n)) / 2 = A355054(n) + A355055(n).
a(n) = A049430(n,n-3), the third diagonal of Lunnon's DE array.
G.f.: (50B(x)^6+3B(x)^7+30B(x)^2B(x^2)^2+3B(x)^3B(x^2)(6+B(x^2))+3B(x)^5(37+2B(x^2))+12B(x)^4(1+3B(x^2))+B(x)(57B(x^2)^2+6B(x^2)^3+6B(x^4)+6B(x^2)B(x^4))+4(3B(x^2)^2+11B(x^2)^3+B(x^3)^2+B(x^6)))/24 + B(x)^2(112B(x)^5+9B(x)^6+3B(x^2)^2+4B(x)B(x^2)^2+B(x)^2B(x^2)(14+B(x^2))+8B(x)^3(1+4B(x^2))+B(x)^4(167+10B(x^2)))/(8(1-B(x))) + B(x)^5(46B(x)^3+6B(x)^4+3B(x^2)+B(x)^2(67+2B(x^2))+B(x)(2+6B(x^2)))/(2(1-B(x))^2) + B(x)^6(153B(x)^2+75B(x)^3+12B(x)^4+3B(x^2)+B(x)(4+3B(x^2)))/(6(1-B(x))^3) + B(x)^9(21+4B(x))/(2(1-B(x))^4) + 3B(x)^10/(2(1-B(x))^5) + B(x^2)(6B(x)^3B(x^2)+2B(x)^4B(x^2)+13B(x^2)^2+19B(x^2)^3+2B(x)^2B(x^2)(1+3B(x^2))+B(x^4)+B(x^2)B(x^4)+B(x)(35B(x^2)^2+5B(x^2)^3+B(x^4)+B(x^2)B(x^4)))/(4(1-B(x^2))) + B(x^2)^4(5+3B(x^2)+B(x)(8+B(x^2)))/(1-B(x^2))^2 + 2B(x^2)^5(1+B(x))/(1-B(x^2))^3 + 2B(x)B(x^3)^2/(6(1-B(x^3))) + B(x)B(x^4)^2/(2(1-B(x^4))) + B(x)^2B(x^2)^2(7B(x)^2+5B(x)^3+3B(x^2)+B(x)(2+B(x^2)))/(2(1-B(x))(1-B(x^2))) + B(x)^5B(x^2)^2(3+2B(x))/((1-B(x))^2(1-B(x^2))) + B(x)^6B(x^2)^2/((1-B(x))^3(1-B(x^2))) + B(x)^2B(x^2)^4/((1-B(x))(1-B(x^2))^2) + B(x^2)B(x^4)^2(1+B(x))/(2(1-B(x^2))(1-B(x^4))), where B(x) is the generating function for rooted trees with n nodes in A000081.

A171860 Number of n-cell fixed polycubes that are proper in n-2 dimensions.

Original entry on oeis.org

0, 1, 17, 348, 8640, 254800, 8749056, 343901376, 15257600000, 755110160640, 41278242816000, 2471677136321536, 160961785787056128, 11330322120000000000, 857485369051342438400, 69444841895469240729600, 5993559601317659925282816, 549242871950650346384195584
Offset: 2

Views

Author

N. J. A. Sloane, Oct 16 2010

Keywords

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275. See Th. 6.

Crossrefs

Cf. A127670, A191092, A036364 (free).
Diagonal 2 of A195739.

Programs

  • Magma
    [2^(n-3)*n^(n-5)*(n-2)*(2*n^2-6*n+9): n in [2..20]]; // Vincenzo Librandi, May 26 2011
  • Mathematica
    Table[2^(n-3)n^(n-5)(n-2)(2n^2-6n+9),{n,2,30}] (* Harvey P. Dale, Nov 27 2024 *)

Formula

a(n) = 2^(n-3)*n^(n-5)*(n-2)*(2*n^2 - 6*n + 9).

Extensions

Slightly edited by Gill Barequet, May 25 2011

A355054 Number of chiral pairs of multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

6, 54, 297, 1341, 5468, 20519, 72168, 242886, 791780, 2514453, 7814225, 23863941, 71835845, 213601046, 628450974, 1832227629, 5299559865, 15221688836, 43450246045, 123345029035, 348417524877, 979803281560
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A045648 (rooted chiral), A195738 (Lunnon's DR), A049430 (Lunnon's DE).
Other dimensions: A036365 (n-2), A045649 (n-1), A355049 (orthoplex).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x,0,nmax}], x], 5]

Formula

a(n) = A355052(n) - A355053(n) = (A355052(n) - A355055(n)) / 2 = A355053(n) - A355055(n).
a(n) = A195738(n,n-3) - A049430(n,n-3), diagonals of Lunnon's DR and DE arrays.
G.f.: (12 C(x)^4 + 87 C(x)^5 + 50 C(x)^6 + 3 C(x)^7 + 18 C(x)^3 C(-x^2) + 36 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 12 C(-x^2)^2 - 27 C(x) C(-x^2)^2 - 6 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 16 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^4) - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^2 (16 C(x)^3 + 159 C(x)^4 + 112 C(x)^5 + 9 C(x)^6 + 14 C(x)^2 C(-x^2) + 32 C(x)^3 C(-x^2) + 10 C(x)^4 C(-x^2) - C(-x^2)^2 + C(x)^2 C(-x^2)^2) / (8 (1-C(x))) + C(x)^5 (2 C(x) + 67 C(x)^2 + 46 C(x)^3 + 6 C(x)^4 + 3 C(-x^2) + 6 C(x) C(-x^2) + 2 C(x)^2 C(-x^2)) / (2 (1-C(x))^2) - C(-x^2) (2 C(x)^2 C(-x^2) + 7 C(-x^2)^2 + 17 C(x) C(-x^2)^2 + 2 C(x)^2 C(-x^2)^2 + 7 C(-x^2)^3 + 5 C(x) C(-x^2)^3 + C(-x^4) + C(x) C(-x^4) + C(-x^2) C(-x^4) + C(x) C(-x^2) C(-x^4)) / (4 (1-C(-x^2))) + C(x)^6 (4 C(x) + 153 C(x)^2 + 75 C(x)^3 + 12 C(x)^4 + 3 C(-x^2) + 3 C(x) C(-x^2)) / (6 (1-C(x))^3) - C(x)^2 C(-x^2)^2 (C(x) + C(-x^2)) / ((1-C(x)) (1-C(-x^2))) + (C(x) C(x^3)^2) / (3 (1-C(x^3))) + C(x)^9 (21 + 4 C(x)) / (2 (1-C(x))^4) - C(-x^2)^4 (6 + 7 C(x) + 2 C(-x^2) + 2 C(x) C(-x^2)) / (2 (1-C(-x^2))^2) + 3 C(x)^10 / (2 (1-C(x))^5) - C(x)^2 C(-x^2)^4 / (2 (1-C(x)) (1-C(-x^2))^2) - (1 + C(x)) C(-x^2)^5 / (1-C(-x^2))^3 where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A355056 Number of asymmetric multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

5, 46, 275, 1283, 5281, 19607, 68476, 227196, 727780, 2263148, 6881482, 20529511, 60312548, 174870492, 501443277, 1424142358, 4011274417, 11216074419, 31160837273, 86078096135, 236568911194, 647181951619
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). An asymmetric polyomino has a symmetry group of order 1.

Examples

			a(5)=5 as there are exactly five asymmetric pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355054 (chiral), A355055 (achiral), A191092 (fixed), A004111 (rooted asymmetric).
Other dimensions: A036366 (n-2), A000220 (n-1), A355051 (orthoplex).

Programs

  • Mathematica
    sa[n_, k_] := sa[n, k] = a[n+1-k, 1] + If[n < 2 k, 0, -sa[n-k, k]];
    a[1, 1] := 1; a[n_, 1] := a[n, 1] = Sum[a[i, 1] sa[n-1, i] i, {i, 1, n-1}]/(n-1);
    a[n_, k_] := a[n, k] = Sum[a[i, 1] a[n-i, k-1], {i, 1, n-1}];
    nmax = 30; A[x_] := Sum[a[i, 1] x^i, {i, 0, nmax}]
    Drop[CoefficientList[Series[(4 A[x]^4 + 37 A[x]^5 + 12 A[x]^6 - 6 A[x]^3 A[x^2] - 10 A[x]^4 A[x^2] - 4 A[x^2]^2 - 17 A[x] A[x^2]^2 - 2 A[x^2]^3 + 2 A[x] A[x^4]) / 8 + (24 A[x]^5 + 515 A[x]^6 + 325 A[x]^7 + 24 A[x]^8 - 48 A[x]^4 A[x^2] - 96 A[x]^5 A[x^2] - 24 A[x]^6 A[x^2] - 21 A[x]^2 A[x^2]^2 + 21 A[x]^3 A[x^2]^2 - 14 A[x^2]^3 + 8 A[x] A[x^2]^3 + 6 A[x]^2 A[x^2]^3 + 4 A[x^3]^2 - 4 A[x] A[x^3]^2 + 24 A[x^2] A[x^4] - 18 A[x] A[x^2] A[x^4] - 6 A[x]^2 A[x^2] A[x^4] - 4 A[x^6] + 4 A[x] A[x^6]) / (24 (1-A[x])) + A[x]^5 (2 A[x] + 67 A[x]^2 + 46 A[x]^3 + 6 A[x]^4 - 3 A[x^2] - 6 A[x] A[x^2] - 2 A[x]^2 A[x^2]) / (2 (1-A[x])^2) - A[x^2] (2 A[x]^2 A[x^2] + 6 A[x]^3 A[x^2] + 2 A[x]^4 A[x^2] + 13 A[x^2]^2 + 31 A[x] A[x^2]^2 + 2 A[x]^2 A[x^2]^2 + 15 A[x^2]^3 + 5 A[x] A[x^2]^3 - 3 A[x^4] - 5 A[x] A[x^4] - 3 A[x^2] A[x^4] - A[x] A[x^2] A[x^4]) / (4 (1-A[x^2])) + A[x]^6 (4 A[x] + 153 A[x]^2 + 75 A[x]^3 + 12 A[x]^4 - 3 A[x^2] - 3 A[x] A[x^2]) / (6 (1-A[x])^3) - A[x]^2 A[x^2]^2 (2 A[x] + 7 A[x]^2 + 5 A[x]^3 + A[x^2] - A[x] A[x^2]) / (2 (1-A[x]) (1-A[x^2])) + A[x] A[x^3]^2 / (1-A[x^3]) / 3 + A[x]^9 (21 + 4 A[x]) / (2 (1-A[x])^4) - A[x]^5 (3 + 2 A[x]) A[x^2]^2 / ((1-A[x])^2 (1-A[x^2])) - A[x^2]^4 (5 + 7 A[x] + 3 A[x^2] + A[x] A[x^2]) / (1-A[x^2])^2 + A[x] A[x^4]^2 / (2 (1-A[x^4])) + 3 A[x]^10 / (2 (1-A[x])^5) - A[x]^6 A[x^2]^2 / ((1-A[x])^3 (1-A[x^2])) - 2 (1 + A[x]) A[x^2]^5 / (1-A[x^2])^3 + 3 (1 + A[x]) A[x^2] A[x^4]^2 / (2 (1-A[x^2]) (1-A[x^4])), {x,0,nmax}], x], 5]

Formula

G.f.: (4 A(x)^4 + 37 A(x)^5 + 12 A(x)^6 - 6 A(x)^3 A(x^2) - 10 A(x)^4 A(x^2) - 4 A(x^2)^2 - 17 A(x) A(x^2)^2 - 2 A(x^2)^3 + 2 A(x) A(x^4)) / 8 + (24 A(x)^5 + 515 A(x)^6 + 325 A(x)^7 + 24 A(x)^8 - 48 A(x)^4 A(x^2) - 96 A(x)^5 A(x^2) - 24 A(x)^6 A(x^2) - 21 A(x)^2 A(x^2)^2 + 21 A(x)^3 A(x^2)^2 - 14 A(x^2)^3 + 8 A(x) A(x^2)^3 + 6 A(x)^2 A(x^2)^3 + 4 A(x^3)^2 - 4 A(x) A(x^3)^2 + 24 A(x^2) A(x^4) - 18 A(x) A(x^2) A(x^4) - 6 A(x)^2 A(x^2) A(x^4) - 4 A(x^6) + 4 A(x) A(x^6)) / (24 (1-A(x))) + A(x)^5 (2 A(x) + 67 A(x)^2 + 46 A(x)^3 + 6 A(x)^4 - 3 A(x^2) - 6 A(x) A(x^2) - 2 A(x)^2 A(x^2)) / (2 (1-A(x))^2) - A(x^2) (2 A(x)^2 A(x^2) + 6 A(x)^3 A(x^2) + 2 A(x)^4 A(x^2) + 13 A(x^2)^2 + 31 A(x) A(x^2)^2 + 2 A(x)^2 A(x^2)^2 + 15 A(x^2)^3 + 5 A(x) A(x^2)^3 - 3 A(x^4) - 5 A(x) A(x^4) - 3 A(x^2) A(x^4) - A(x) A(x^2) A(x^4)) / (4 (1-A(x^2))) + A(x)^6 (4 A(x) + 153 A(x)^2 + 75 A(x)^3 + 12 A(x)^4 - 3 A(x^2) - 3 A(x) A(x^2)) / (6 (1-A(x))^3) - A(x)^2 A(x^2)^2 (2 A(x) + 7 A(x)^2 + 5 A(x)^3 + A(x^2) - A(x) A(x^2)) / (2 (1-A(x)) (1-A(x^2))) + A(x) A(x^3)^2 / (1-A(x^3)) / 3 + A(x)^9 (21 + 4 A(x)) / (2 (1-A(x))^4) - A(x)^5 (3 + 2 A(x)) A(x^2)^2 / ((1-A(x))^2 (1-A(x^2))) - A(x^2)^4 (5 + 7 A(x) + 3 A(x^2) + A(x) A(x^2)) / (1-A(x^2))^2 + A(x) A(x^4)^2 / (2 (1-A(x^4))) + 3 A(x)^10 / (2 (1-A(x))^5) - A(x)^6 A(x^2)^2 / ((1-A(x))^3 (1-A(x^2))) - 2 (1 + A(x)) A(x^2)^5 / (1-A(x^2))^3 + 3 (1 + A(x)) A(x^2) A(x^4)^2 / (2 (1-A(x^2)) (1-A(x^4))) where A(x) is the generating function for rooted identity trees with n nodes in A004111.

A355052 Number of oriented multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

1, 17, 131, 709, 3350, 14337, 57507, 218746, 803384, 2870707, 10044838, 34548917, 117224825, 393290329, 1307200931, 4310348599, 14116544717, 45959805027, 148860350902, 479938536114, 1541025955958, 4929773150983
Offset: 4

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). This sequence is obtained using the first formula below. For oriented polyominoes, chiral pairs are counted as two.

Examples

			a(4)=1 because there is just one tetromino (with four cells aligned) in 1-space. a(5)=17 because there are 5 achiral and 6 chiral pairs of pentominoes in 2-space, excluding the 1-D straight pentomino.
		

Crossrefs

Cf. A355053 (unoriented), A355054 (chiral), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A355047 (orthoplex), A195738 (Lunnon's DR).

Formula

a(n) = A355053(n) + A355054(n) = 2*A355053(n) - A355055(n) = 2*A355054(n) + A355055(n).
a(n) = A195738(n,n-3), the third diagonal of Lunnon's DR array.

A355055 Number of achiral multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

1, 5, 23, 115, 668, 3401, 16469, 74410, 317612, 1287147, 5015932, 18920467, 69496943, 249618639, 879998839, 3053446651, 10452089459, 35360685297, 118416973230, 393038044024, 1294335897888, 4232938101229, 13757913332396
Offset: 4

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). This sequence is obtained using the first formula below. An achiral polyomino is identical to its reflection.

Examples

			a(4)=1 as there is only one tetromino in one-space. a(5)=5 because there are 5 achiral pentominoes in 2-space, excluding the 1-D straight pentomino.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355054 (chiral), A355056 (asymmetric), A191092 (fixed), A355050 (orthoplex), A195738 (Lunnon's DR), A049430 (Lunnon's DE).

Formula

a(n) = A355053(n) - A355054(n) = 2*A355053(n) - A355052(n) = A355052(n) - 2*A355054(n).
a(n) = 2*A049430(n,n-3) - A195738(n,n-3), Lunnon's DE and DR arrays.

A355999 Number of fixed orthoplex n-ominoes with cell centers determining (n-3)-space.

Original entry on oeis.org

28, 4240, 344320, 23872320, 1603840000, 109616815616, 7785535242240, 580217967114240, 45559682696478700, 3774254616000000000, 329816052160897000000, 30372942170151000000000, 2943608844201080000000000
Offset: 6

Views

Author

Robert A. Russell, Jul 22 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Two fixed polyominoes are identical only if one is a translation of the other.

Examples

			For a(6)=28, 6 of the 8 cubes in the 2^3 space are used. There are 12 cases where the 2 empty cubes share a face, 12 cases where they share an edge, and 4 cases where they share a vertex.
		

Crossrefs

Cf. A191092 (multidimensional), A355048 (unoriented), A355049 (chiral), A355051 (asymmetric).
Diagonal 3 of A355997.

Programs

  • Mathematica
    Table[2^(n-6) n^(n-7) (n-3) (n-4) (n-5) (3n^3-17n^2+21n-78), {n,6,30}]
  • Python
    def A355999(n): return int(((1<Chai Wah Wu, Jul 26 2022

Formula

a(n) = 2^(n-6) * n^(n-7) * (n-3) * (n-4) * (n-5) * (3n^3-17n^2+21n-78) / 3.
a(n) ~ A191092(n) / 4.
Showing 1-9 of 9 results.