cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049430 Triangle read by rows: T(n,d) is the number of distinct properly d-dimensional polyominoes (or polycubes) with n cells (n >= 1, d >= 0).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 11, 3, 0, 1, 34, 77, 35, 6, 0, 1, 107, 499, 412, 104, 11, 0, 1, 368, 3442, 4888, 2009, 319, 23, 0, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 0, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 0, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 1

Views

Author

Richard C. Schroeppel

Keywords

Examples

			Triangle begins:
1
0 1
0 1     1
0 1     4       2
0 1    11      11       3
0 1    34      77      35        6
0 1   107     499     412      104      11
0 1   368    3442    4888     2009     319      23
0 1  1284   24128   57122    36585    8869     951     47
0 1  4654  173428  667959   647680  231574   36988   2862  106
0 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
...
		

Crossrefs

Cf. A049429 (col. d=0 omitted), A195738 (oriented), A195739 (fixed).
Row sums give A005519. Columns give A006765, A006766, A006767, A006768.
Diagonals (with algorithms) are A000055, A036364, A355053.
Cf. A330891 (cumulative sums of the rows).

Extensions

Edited by N. J. A. Sloane, Sep 23 2011
More terms from John Niss Hansen, Mar 31 2015

A049429 Triangle T(n,d) = number of distinct d-dimensional polyominoes (or polycubes) with n cells (0 < d < n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 11, 11, 3, 1, 34, 77, 35, 6, 1, 107, 499, 412, 104, 11, 1, 368, 3442, 4888, 2009, 319, 23, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 2

Views

Author

Richard C. Schroeppel

Keywords

Comments

These are unoriented polyominoes of the regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). For unoriented polyominoes, chiral pairs are counted as one. The dimension of the convex hull of the cell centers determines the dimension d. - Robert A. Russell, Aug 09 2022

Examples

			From _Robert A. Russell_, Aug 09 2022: (Start)
Triangle begins with T(2,1):
n\d 1     2       3       4        5       6       7      8    9  10
2   1
3   1     1
4   1     4       2
5   1    11      11       3
6   1    34      77      35        6
7   1   107     499     412      104      11
8   1   368    3442    4888     2009     319      23
9   1  1284   24128   57122    36585    8869     951     47
10  1  4654  173428  667959   647680  231574   36988   2862  106
11  1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
(End)
		

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Cf. A049430 (col. d=0 added), A195738 (oriented), A195739 (fixed).
Diagonals (with algorithms) are A000055, A036364, A355053.
Row sums give A005519. Columns are A006765-A006768.

Extensions

Two more rows added by Robert A. Russell, Aug 09 2022.

A355048 Number of unoriented orthoplex n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

3, 18, 122, 655, 3240, 14531, 61520, 247381, 958434, 3598594, 13180348, 47274577, 166642096, 578750970, 1984671466, 6731351834, 22612409886, 75321920403, 249028297179, 817867225710, 2670093233760, 8670380548402
Offset: 6

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. For unoriented polyominoes, chiral pairs are counted as one.

Examples

			a(6)=3 because there are 3 hexominoes in 2^3 space. The two vacant cells share just a face, an edge, or a vertex.
		

Crossrefs

Cf. A355047 (oriented), A355049 (chiral), A355050 (achiral) A355051 (asymmetric), A000081 (rooted trees).
Other dimensions: A036367 (n-2), A000055 (n-1), A355053 (multidimensional).

Programs

  • Mathematica
    sb[n_,k_] := sb[n,k] = b[n+1-k,1] + If[n<2k,0,sb[n-k,k]];
    b[1,1] := 1; b[n_,1] := b[n,1] = Sum[b[i,1]sb[n-1,i]i,{i,1,n-1}]/(n-1);
    b[n_,k_] := b[n,k] = Sum[b[i,1]b[n-i,k-1],{i,1,n-1}];
    nmax = 30; B[x_] := Sum[b[i,1]x^i,{i,0,nmax}]
    Drop[CoefficientList[Series[(14B[x]^6 + 3B[x]^7 + 6B[x]^4B[x^2] + 6B[x]^5B[x^2] + 18B[x]^2B[x^2]^2 + 3B[x]^3B[x^2]^2 + 26B[x^2]^3 + 6 B[x]B[x^2](B[x^2]^2 + B[x^4]) + 4B[x^3]^2 + 4B[x^6]) / 24 + B[x]^3 (38B[x]^4 + 9B[x]^5 + 4B[x]^2B[x^2] + 10B[x]^3B[x^2] + 2B[x^2]^2 + B[x]B[x^2]^2) / (8(1-B[x])) + B[x]^6 (16B[x]^2 + 6B[x]^3 + B[x^2] + B[x] (5 + 2B[x^2])) / (2(1-B[x])^2) + B[x]^7 (2 + 42B[x] + 51B[x]^2 + 24B[x]^3 + 3B[x^2]) / (12(1-B[x])^3) + B[x]^9 (17 + 8B[x]) / (8(1-B[x])^4) + 3B[x]^10 / (8(1-B[x])^5) + B[x^2]^2(B[x]^4 + 4B[x]^2 B[x^2] + 12B[x^2]^2 + B[x^4] + B[x] (8B[x^2] + 5B[x^2]^2 + B[x^4])) / (4(1-B[x^2])) + B[x^2]^4 (8 + 16B[x^2] + B[x] (19 + 8B[x^2])) / (8(1-B[x^2])^2) + 3(1 + B[x])B[x^2]^5 / (4(1-B[x^2])^3) + 2B[x]B[x^3]^2 / (6(1-B[x^3])) + B[x]B[x^4]^2 / (4(1-B[x^4])) + B[x]^2B[x^2]^2(5B[x]^3 + 2B[x^2] + B[x](2 + B[x^2])) / (4(1-B[x])(1-B[x^2])) + B[x]^5(1+4B[x])B[x^2]^2 / (4(1-B[x])^2(1-B[x^2])) + B[x]^6 B[x^2]^2 / (4(1-B[x])^3(1-B[x^2])) + 3B[x]^2B[x^2]^4 / (8(1-B[x])(1-B[x^2])^2) + B[x^2](1+B[x])B[x^4]^2 / (4(1-B[x^2])(1-B[x^4])), {x,0,nmax}],x],6]

Formula

a(n) = A355047(n) - A355049(n) = (A355047(n) + A355050(n)) / 2 = A355049(n) + A355050(n).
G.f.: (14*B(x)^6 + 3*B(x)^7 + 6*B(x)^4*B(x^2) + 6*B(x)^5*B(x^2) + 18*B(x)^2*B(x^2)^2 + 3*B(x)^3*B(x^2)^2 + 26*B(x^2)^3 + 6*B(x)*B(x^2)*(B(x^2)^2 + B(x^4)) + 4*B(x^3)^2 + 4*B(x^6)) / 24 + B(x)^3*(38*B(x)^4 + 9*B(x)^5 + 4*B(x)^2*B(x^2) + 10*B(x)^3*B(x^2) + 2*B(x^2)^2 + B(x)*B(x^2)^2) / (8*(1-B(x))) + B(x)^6*(16*B(x)^2 + 6*B(x)^3 + B(x^2) + B(x)*(5 + 2*B(x^2))) / (2*(1-B(x))^2) + B(x)^7*(2 + 42*B(x) + 51*B(x)^2 + 24*B(x)^3 + 3*B(x^2)) / (12*(1-B(x))^3) + B(x)^9*(17 + 8*B(x)) / (8*(1-B(x))^4) + 3*B(x)^10 / (8*(1-B(x))^5) + B(x^2)^2*(B(x)^4 + 4*B(x)^2*B(x^2) + 12*B(x^2)^2 + B(x^4) + B(x)*(8*B(x^2) + 5*B(x^2)^2 + B(x^4))) / (4*(1-B(x^2))) + B(x^2)^4*(8 + 16*B(x^2) + B(x)*(19 + 8*B(x^2))) / (8*(1-B(x^2))^2) + 3*(1 + B(x))*B(x^2)^5 / (4*(1-B(x^2))^3) + 2*B(x)*B(x^3)^2 / (6*(1-B(x^3))) + B(x)*B(x^4)^2 / (4*(1-B(x^4))) + B(x)^2*B(x^2)^2*(5*B(x)^3 + 2*B(x^2) + B(x)*(2 + B(x^2))) / (4*(1-B(x))*(1-B(x^2))) + B(x)^5*(1+4*B(x))*B(x^2)^2 / (4*(1-B(x))^2*(1-B(x^2))) + B(x)^6*B(x^2)^2 / (4*(1-B(x))^3*(1-B(x^2))) + 3*B(x)^2*B(x^2)^4 / (8*(1-B(x))*(1-B(x^2))^2) + B(x^2)*(1+B(x))*B(x^4)^2 / (4*(1-B(x^2))*(1-B(x^4))), where B(x) is the generating function for rooted trees with n nodes in A000081.

A355054 Number of chiral pairs of multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

6, 54, 297, 1341, 5468, 20519, 72168, 242886, 791780, 2514453, 7814225, 23863941, 71835845, 213601046, 628450974, 1832227629, 5299559865, 15221688836, 43450246045, 123345029035, 348417524877, 979803281560
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A045648 (rooted chiral), A195738 (Lunnon's DR), A049430 (Lunnon's DE).
Other dimensions: A036365 (n-2), A045649 (n-1), A355049 (orthoplex).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x,0,nmax}], x], 5]

Formula

a(n) = A355052(n) - A355053(n) = (A355052(n) - A355055(n)) / 2 = A355053(n) - A355055(n).
a(n) = A195738(n,n-3) - A049430(n,n-3), diagonals of Lunnon's DR and DE arrays.
G.f.: (12 C(x)^4 + 87 C(x)^5 + 50 C(x)^6 + 3 C(x)^7 + 18 C(x)^3 C(-x^2) + 36 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 12 C(-x^2)^2 - 27 C(x) C(-x^2)^2 - 6 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 16 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^4) - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^2 (16 C(x)^3 + 159 C(x)^4 + 112 C(x)^5 + 9 C(x)^6 + 14 C(x)^2 C(-x^2) + 32 C(x)^3 C(-x^2) + 10 C(x)^4 C(-x^2) - C(-x^2)^2 + C(x)^2 C(-x^2)^2) / (8 (1-C(x))) + C(x)^5 (2 C(x) + 67 C(x)^2 + 46 C(x)^3 + 6 C(x)^4 + 3 C(-x^2) + 6 C(x) C(-x^2) + 2 C(x)^2 C(-x^2)) / (2 (1-C(x))^2) - C(-x^2) (2 C(x)^2 C(-x^2) + 7 C(-x^2)^2 + 17 C(x) C(-x^2)^2 + 2 C(x)^2 C(-x^2)^2 + 7 C(-x^2)^3 + 5 C(x) C(-x^2)^3 + C(-x^4) + C(x) C(-x^4) + C(-x^2) C(-x^4) + C(x) C(-x^2) C(-x^4)) / (4 (1-C(-x^2))) + C(x)^6 (4 C(x) + 153 C(x)^2 + 75 C(x)^3 + 12 C(x)^4 + 3 C(-x^2) + 3 C(x) C(-x^2)) / (6 (1-C(x))^3) - C(x)^2 C(-x^2)^2 (C(x) + C(-x^2)) / ((1-C(x)) (1-C(-x^2))) + (C(x) C(x^3)^2) / (3 (1-C(x^3))) + C(x)^9 (21 + 4 C(x)) / (2 (1-C(x))^4) - C(-x^2)^4 (6 + 7 C(x) + 2 C(-x^2) + 2 C(x) C(-x^2)) / (2 (1-C(-x^2))^2) + 3 C(x)^10 / (2 (1-C(x))^5) - C(x)^2 C(-x^2)^4 / (2 (1-C(x)) (1-C(-x^2))^2) - (1 + C(x)) C(-x^2)^5 / (1-C(-x^2))^3 where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A355056 Number of asymmetric multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

5, 46, 275, 1283, 5281, 19607, 68476, 227196, 727780, 2263148, 6881482, 20529511, 60312548, 174870492, 501443277, 1424142358, 4011274417, 11216074419, 31160837273, 86078096135, 236568911194, 647181951619
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). An asymmetric polyomino has a symmetry group of order 1.

Examples

			a(5)=5 as there are exactly five asymmetric pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355054 (chiral), A355055 (achiral), A191092 (fixed), A004111 (rooted asymmetric).
Other dimensions: A036366 (n-2), A000220 (n-1), A355051 (orthoplex).

Programs

  • Mathematica
    sa[n_, k_] := sa[n, k] = a[n+1-k, 1] + If[n < 2 k, 0, -sa[n-k, k]];
    a[1, 1] := 1; a[n_, 1] := a[n, 1] = Sum[a[i, 1] sa[n-1, i] i, {i, 1, n-1}]/(n-1);
    a[n_, k_] := a[n, k] = Sum[a[i, 1] a[n-i, k-1], {i, 1, n-1}];
    nmax = 30; A[x_] := Sum[a[i, 1] x^i, {i, 0, nmax}]
    Drop[CoefficientList[Series[(4 A[x]^4 + 37 A[x]^5 + 12 A[x]^6 - 6 A[x]^3 A[x^2] - 10 A[x]^4 A[x^2] - 4 A[x^2]^2 - 17 A[x] A[x^2]^2 - 2 A[x^2]^3 + 2 A[x] A[x^4]) / 8 + (24 A[x]^5 + 515 A[x]^6 + 325 A[x]^7 + 24 A[x]^8 - 48 A[x]^4 A[x^2] - 96 A[x]^5 A[x^2] - 24 A[x]^6 A[x^2] - 21 A[x]^2 A[x^2]^2 + 21 A[x]^3 A[x^2]^2 - 14 A[x^2]^3 + 8 A[x] A[x^2]^3 + 6 A[x]^2 A[x^2]^3 + 4 A[x^3]^2 - 4 A[x] A[x^3]^2 + 24 A[x^2] A[x^4] - 18 A[x] A[x^2] A[x^4] - 6 A[x]^2 A[x^2] A[x^4] - 4 A[x^6] + 4 A[x] A[x^6]) / (24 (1-A[x])) + A[x]^5 (2 A[x] + 67 A[x]^2 + 46 A[x]^3 + 6 A[x]^4 - 3 A[x^2] - 6 A[x] A[x^2] - 2 A[x]^2 A[x^2]) / (2 (1-A[x])^2) - A[x^2] (2 A[x]^2 A[x^2] + 6 A[x]^3 A[x^2] + 2 A[x]^4 A[x^2] + 13 A[x^2]^2 + 31 A[x] A[x^2]^2 + 2 A[x]^2 A[x^2]^2 + 15 A[x^2]^3 + 5 A[x] A[x^2]^3 - 3 A[x^4] - 5 A[x] A[x^4] - 3 A[x^2] A[x^4] - A[x] A[x^2] A[x^4]) / (4 (1-A[x^2])) + A[x]^6 (4 A[x] + 153 A[x]^2 + 75 A[x]^3 + 12 A[x]^4 - 3 A[x^2] - 3 A[x] A[x^2]) / (6 (1-A[x])^3) - A[x]^2 A[x^2]^2 (2 A[x] + 7 A[x]^2 + 5 A[x]^3 + A[x^2] - A[x] A[x^2]) / (2 (1-A[x]) (1-A[x^2])) + A[x] A[x^3]^2 / (1-A[x^3]) / 3 + A[x]^9 (21 + 4 A[x]) / (2 (1-A[x])^4) - A[x]^5 (3 + 2 A[x]) A[x^2]^2 / ((1-A[x])^2 (1-A[x^2])) - A[x^2]^4 (5 + 7 A[x] + 3 A[x^2] + A[x] A[x^2]) / (1-A[x^2])^2 + A[x] A[x^4]^2 / (2 (1-A[x^4])) + 3 A[x]^10 / (2 (1-A[x])^5) - A[x]^6 A[x^2]^2 / ((1-A[x])^3 (1-A[x^2])) - 2 (1 + A[x]) A[x^2]^5 / (1-A[x^2])^3 + 3 (1 + A[x]) A[x^2] A[x^4]^2 / (2 (1-A[x^2]) (1-A[x^4])), {x,0,nmax}], x], 5]

Formula

G.f.: (4 A(x)^4 + 37 A(x)^5 + 12 A(x)^6 - 6 A(x)^3 A(x^2) - 10 A(x)^4 A(x^2) - 4 A(x^2)^2 - 17 A(x) A(x^2)^2 - 2 A(x^2)^3 + 2 A(x) A(x^4)) / 8 + (24 A(x)^5 + 515 A(x)^6 + 325 A(x)^7 + 24 A(x)^8 - 48 A(x)^4 A(x^2) - 96 A(x)^5 A(x^2) - 24 A(x)^6 A(x^2) - 21 A(x)^2 A(x^2)^2 + 21 A(x)^3 A(x^2)^2 - 14 A(x^2)^3 + 8 A(x) A(x^2)^3 + 6 A(x)^2 A(x^2)^3 + 4 A(x^3)^2 - 4 A(x) A(x^3)^2 + 24 A(x^2) A(x^4) - 18 A(x) A(x^2) A(x^4) - 6 A(x)^2 A(x^2) A(x^4) - 4 A(x^6) + 4 A(x) A(x^6)) / (24 (1-A(x))) + A(x)^5 (2 A(x) + 67 A(x)^2 + 46 A(x)^3 + 6 A(x)^4 - 3 A(x^2) - 6 A(x) A(x^2) - 2 A(x)^2 A(x^2)) / (2 (1-A(x))^2) - A(x^2) (2 A(x)^2 A(x^2) + 6 A(x)^3 A(x^2) + 2 A(x)^4 A(x^2) + 13 A(x^2)^2 + 31 A(x) A(x^2)^2 + 2 A(x)^2 A(x^2)^2 + 15 A(x^2)^3 + 5 A(x) A(x^2)^3 - 3 A(x^4) - 5 A(x) A(x^4) - 3 A(x^2) A(x^4) - A(x) A(x^2) A(x^4)) / (4 (1-A(x^2))) + A(x)^6 (4 A(x) + 153 A(x)^2 + 75 A(x)^3 + 12 A(x)^4 - 3 A(x^2) - 3 A(x) A(x^2)) / (6 (1-A(x))^3) - A(x)^2 A(x^2)^2 (2 A(x) + 7 A(x)^2 + 5 A(x)^3 + A(x^2) - A(x) A(x^2)) / (2 (1-A(x)) (1-A(x^2))) + A(x) A(x^3)^2 / (1-A(x^3)) / 3 + A(x)^9 (21 + 4 A(x)) / (2 (1-A(x))^4) - A(x)^5 (3 + 2 A(x)) A(x^2)^2 / ((1-A(x))^2 (1-A(x^2))) - A(x^2)^4 (5 + 7 A(x) + 3 A(x^2) + A(x) A(x^2)) / (1-A(x^2))^2 + A(x) A(x^4)^2 / (2 (1-A(x^4))) + 3 A(x)^10 / (2 (1-A(x))^5) - A(x)^6 A(x^2)^2 / ((1-A(x))^3 (1-A(x^2))) - 2 (1 + A(x)) A(x^2)^5 / (1-A(x^2))^3 + 3 (1 + A(x)) A(x^2) A(x^4)^2 / (2 (1-A(x^2)) (1-A(x^4))) where A(x) is the generating function for rooted identity trees with n nodes in A004111.

A355052 Number of oriented multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

1, 17, 131, 709, 3350, 14337, 57507, 218746, 803384, 2870707, 10044838, 34548917, 117224825, 393290329, 1307200931, 4310348599, 14116544717, 45959805027, 148860350902, 479938536114, 1541025955958, 4929773150983
Offset: 4

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). This sequence is obtained using the first formula below. For oriented polyominoes, chiral pairs are counted as two.

Examples

			a(4)=1 because there is just one tetromino (with four cells aligned) in 1-space. a(5)=17 because there are 5 achiral and 6 chiral pairs of pentominoes in 2-space, excluding the 1-D straight pentomino.
		

Crossrefs

Cf. A355053 (unoriented), A355054 (chiral), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A355047 (orthoplex), A195738 (Lunnon's DR).

Formula

a(n) = A355053(n) + A355054(n) = 2*A355053(n) - A355055(n) = 2*A355054(n) + A355055(n).
a(n) = A195738(n,n-3), the third diagonal of Lunnon's DR array.

A355055 Number of achiral multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

1, 5, 23, 115, 668, 3401, 16469, 74410, 317612, 1287147, 5015932, 18920467, 69496943, 249618639, 879998839, 3053446651, 10452089459, 35360685297, 118416973230, 393038044024, 1294335897888, 4232938101229, 13757913332396
Offset: 4

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). This sequence is obtained using the first formula below. An achiral polyomino is identical to its reflection.

Examples

			a(4)=1 as there is only one tetromino in one-space. a(5)=5 because there are 5 achiral pentominoes in 2-space, excluding the 1-D straight pentomino.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355054 (chiral), A355056 (asymmetric), A191092 (fixed), A355050 (orthoplex), A195738 (Lunnon's DR), A049430 (Lunnon's DE).

Formula

a(n) = A355053(n) - A355054(n) = 2*A355053(n) - A355052(n) = A355052(n) - 2*A355054(n).
a(n) = 2*A049430(n,n-3) - A195738(n,n-3), Lunnon's DE and DR arrays.
Showing 1-7 of 7 results.