cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A195739 Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 0, 1, 17, 32, 0, 1, 61, 348, 400, 0, 1, 214, 2836, 8640, 6912, 0, 1, 758, 21225, 129288, 254800, 153664, 0, 1, 2723, 154741, 1688424, 6160640, 8749056, 4194304, 0, 1, 9908, 1123143, 20762073, 125055400, 313921008, 343901376, 136048896
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2011

Keywords

Comments

According to Barequet-Barequet-Rote, p. 261, the value DX(7, 6) = 134209 given by W. F. Lunnon is incorrect; it should be 153664, see A127670. - Alexander Knapp, May 13 2013

Examples

			Triangle begins with DX(1,0):
n\d 0  1   2     3      4      5      6
---------------------------------------
1...1
2...0  1
3...0  1   4
4...0  1  17    32
5...0  1  61   348    400
6...0  1 214  2836   8640   6912
7...0  1 758 21225 129288 254800 153664
...
		

Crossrefs

Columns give A006762, A006763, A006764. Cf. A195738, A049430.
Diagonals (with formulas) are A127670, A171860, A191092, A259015, A290738.

A191092 Number of n-cell polycubes that are proper in n-3 dimensions.

Original entry on oeis.org

0, 1, 61, 2836, 129288, 6160640, 313921008, 17239040000, 1021644763392, 65244849242112, 4477975127425280, 329252714454974464, 25850313756000000000, 2160223055912342913024, 191558954408834121740288, 17973564914103712921681920
Offset: 3

Views

Author

Gill Barequet, May 25 2011

Keywords

References

  • A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-cell polycubes in n-3 dimensions, Proc. 17th Ann. Int. Computing and Combinatorics Conference, Dallas, TX, Lecture Notes in Computer Science, 6842, Springer-Verlag, 180-191, August 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.

Crossrefs

Diagonal 3 of A195739.

Programs

  • Magma
    [2^(n-6)*n^(n-7)*(n-3)*(12*n^5-104*n^4+360*n^3-679*n^2+1122*n-1560)/3: n in [3..40]]; // Vincenzo Librandi, May 26 2011
  • Mathematica
    a[n_]:=2^(n-6)*n^(n-7)*(n-3)*(12*n^5 - 104*n^4 + 360*n^3 - 679*n^2 + 1122*n - 1560)/3 ; Array[a, 40, 3] (* Stefano Spezia, Sep 09 2018 *)
  • PARI
    a(n)=2^(n-6)*n^(n-7)*(n-3)*(12*n^5-104*n^4+360*n^3-679*n^2+1122*n-1560)/3
    

Formula

a(n) = 2^(n-6)*n^(n-7)*(n-3)*(12*n^5 - 104*n^4 + 360*n^3 - 679*n^2 + 1122*n - 1560)/3.

A036364 Number of free n-ominoes with cell centers determining n-2 space (proper dimension n-2).

Original entry on oeis.org

1, 4, 11, 35, 104, 319, 951, 2862, 8516, 25369, 75167, 222529, 656961, 1937393, 5704426, 16781247, 49320800, 144866243, 425263010, 1247877578, 3660478408, 10734834603, 31475111515, 92273758477, 270486112046, 792836030163, 2323835125879, 6811162237825
Offset: 3

Views

Author

Keywords

Comments

Lunnon's DE(n,n-2); Lunnon's DE(n,n-1) is number of free trees.

Examples

			1 tromino in 1-space;
4 nonstraight tetrominoes in 2-space;
11 nonflat pentominoes in 3-space (chiral pairs count as one).
		

Crossrefs

Cf. A000081, A000055, A036365, A171860 (fixed).

Programs

  • Mathematica
    sb[ n_, k_ ] := sb[ n, k ]=b[ n+1-k, 1 ]+If[ n<2k, 0, sb[ n-k, k ] ]; b[ 1, 1 ] := 1;
    b[ n_, 1 ] := b[ n, 1 ]=Sum[ b[ i, 1 ]sb[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
    b[ n_, k_ ] := b[ n, k ]=Sum[ b[ i, 1 ]b[ n-i, k-1 ], {i, 1, n-1} ];
    Table[ b[ i, 3 ]/2+5b[ i, 4 ]/8+Sum[ b[ i, j ], {j, 5, i} ]+If[ OddQ[ i ], 0, 7b[ i/2, 2 ]/8
    +If[ OddQ[ i/2 ], 0, b[ i/4, 1 ]/4 ]+Sum[ b[ i/2, j ], {j, 3, i/2} ] ]
    +Sum[ b[ j, 1 ](b[ i-2j, 1 ]/2+b[ i-2j, 2 ]/4)+Sum[ If[ OddQ[ k ], b[ j,
    (k-1)/2 ]b[ i-2j, 1 ], 0 ], {k, 5, i} ], {j, 1, (i-1)/2} ], {i, 3, 30} ]

Formula

G.f.: B^3(x)/2 + B(x)B(x^2)/2 + 5B^4(x)/8 + B^2(x)B(x^2)/4 + 7B^2(x^2)/8 + B(x^4)/4 + B^5(x)/(1-B(x)) + (B(x)+B(x^2))B^2(x^2)/(1-B(x^2)), where B(x) is the generating function for rooted trees with n nodes (that is, B(x) is the g.f. of sequence A000081).
a(n) ~ A340310 * A051491^n / sqrt(n). - Vaclav Kotesovec, Apr 12 2021

A355998 Number of fixed orthoplex n-ominoes with cell centers determining (n-2)-space.

Original entry on oeis.org

1, 48, 1728, 62720, 2457600, 105815808, 5017600000, 261227298816, 14860167413760, 918839084134400, 61439672177393700, 4421589120000000000, 340976534987475000000, 28064307240230900000000, 2456376885785930000000000
Offset: 4

Views

Author

Robert A. Russell, Jul 22 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Two fixed polyominoes are identical only if one is a translation of the other.

Examples

			For A(4)=1, all 4 squares of the 2^2 space are used.
		

Crossrefs

Cf. A171860 (multidimensional), A036367 (unoriented), A036368 (chiral), A036369 (asymmetric).
Diagonal 2 of A355997.

Programs

  • Mathematica
    Table[2^(n-3) n^(n-5) (n-2) (n-3)^2, {n,4,30}]

Formula

a(n) = 2^(n-3) * n^(n-5) * (n-2) * (n-3)^2.
a(n) ~ A171860(n) / 2.
Showing 1-5 of 5 results.