A127670
Discriminants of Chebyshev S-polynomials A049310.
Original entry on oeis.org
1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1
n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
- G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Andrei Asinowski, Gill Barequet, Ronnie Barequet, and Gunter Rote, Proper n-Cell Polycubes in n - 3 Dimensions, Journal of Integer Sequences, Vol. 15 (2012), #12.8.4.
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012. See Th. 1. [From _N. J. A. Sloane_, Oct 16 2010]
- R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica 30 (2010), pp. 257-275.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- M. Haiman, Conjectures on the quotient ring by diagonal invariants, preprint, 1993.
- M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), no. 1, 17--76.
- O. Khorunzhiy, Enumeration of tree-type diagrams assembled from oriented chains of edges, arXiv:2207.00766 [math.CO], 2022.
- Andrew Snowden, Measures for the colored circle, arXiv:2302.08699 [math.CO], 2023.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A243953,
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
A317403 is essentially the same sequence.
A049430
Triangle read by rows: T(n,d) is the number of distinct properly d-dimensional polyominoes (or polycubes) with n cells (n >= 1, d >= 0).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 11, 3, 0, 1, 34, 77, 35, 6, 0, 1, 107, 499, 412, 104, 11, 0, 1, 368, 3442, 4888, 2009, 319, 23, 0, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 0, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 0, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 4 2
0 1 11 11 3
0 1 34 77 35 6
0 1 107 499 412 104 11
0 1 368 3442 4888 2009 319 23
0 1 1284 24128 57122 36585 8869 951 47
0 1 4654 173428 667959 647680 231574 36988 2862 106
0 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
...
Cf.
A330891 (cumulative sums of the rows).
A195738
Triangle read by rows: DR(n,d) is the number of properly d-dimensional polyominoes with n cells, modulo translations and rotations (n >= 1, 0 <= d <= n-1).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 6, 3, 0, 1, 17, 17, 4, 0, 1, 59, 131, 52, 7, 0, 1, 195, 915, 709, 153, 13, 0, 1, 703, 6553, 8946, 3350, 454, 28
Offset: 1
Triangle begins:
n\d| 0 1 2 3 4 5 6 7
---+---------------------------------=---
1 | 1
2 | 0 1
3 | 0 1 1
4 | 0 1 6 3
5 | 0 1 17 17 4
6 | 0 1 59 131 52 7
7 | 0 1 195 915 709 153 13
8 | 0 1 703 6553 8946 3350 454 28
...
A049429
Triangle T(n,d) = number of distinct d-dimensional polyominoes (or polycubes) with n cells (0 < d < n).
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 11, 11, 3, 1, 34, 77, 35, 6, 1, 107, 499, 412, 104, 11, 1, 368, 3442, 4888, 2009, 319, 23, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 2
From _Robert A. Russell_, Aug 09 2022: (Start)
Triangle begins with T(2,1):
n\d 1 2 3 4 5 6 7 8 9 10
2 1
3 1 1
4 1 4 2
5 1 11 11 3
6 1 34 77 35 6
7 1 107 499 412 104 11
8 1 368 3442 4888 2009 319 23
9 1 1284 24128 57122 36585 8869 951 47
10 1 4654 173428 667959 647680 231574 36988 2862 106
11 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
(End)
- Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
A191092
Number of n-cell polycubes that are proper in n-3 dimensions.
Original entry on oeis.org
0, 1, 61, 2836, 129288, 6160640, 313921008, 17239040000, 1021644763392, 65244849242112, 4477975127425280, 329252714454974464, 25850313756000000000, 2160223055912342913024, 191558954408834121740288, 17973564914103712921681920
Offset: 3
- A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-cell polycubes in n-3 dimensions, Proc. 17th Ann. Int. Computing and Combinatorics Conference, Dallas, TX, Lecture Notes in Computer Science, 6842, Springer-Verlag, 180-191, August 2011.
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
- G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
- R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
- Vincenzo Librandi, Table of n, a(n) for n = 3..100
- A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-Cell Polycubes in n-3 Dimensions, J. Int. Seq. 15 (2012) #12.8.4.
- M. Shalah, Formulae and growth rates of animals on cubical and triangular lattices, PhD Thesis, Israel Inst. Techn. (2017)
-
[2^(n-6)*n^(n-7)*(n-3)*(12*n^5-104*n^4+360*n^3-679*n^2+1122*n-1560)/3: n in [3..40]]; // Vincenzo Librandi, May 26 2011
-
a[n_]:=2^(n-6)*n^(n-7)*(n-3)*(12*n^5 - 104*n^4 + 360*n^3 - 679*n^2 + 1122*n - 1560)/3 ; Array[a, 40, 3] (* Stefano Spezia, Sep 09 2018 *)
-
a(n)=2^(n-6)*n^(n-7)*(n-3)*(12*n^5-104*n^4+360*n^3-679*n^2+1122*n-1560)/3
A006762
Number of strictly 2-dimensional fixed polyominoes with n cells.
Original entry on oeis.org
0, 0, 4, 17, 61, 214, 758, 2723, 9908, 36444, 135266, 505859, 1903888, 7204872, 27394664, 104592935, 400795842, 1540820540, 5940738674, 22964779658, 88983512781, 345532572676, 1344372335522, 5239988770266, 20457802016009, 79992676367106, 313224032098242, 1228088671826971
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A171860
Number of n-cell fixed polycubes that are proper in n-2 dimensions.
Original entry on oeis.org
0, 1, 17, 348, 8640, 254800, 8749056, 343901376, 15257600000, 755110160640, 41278242816000, 2471677136321536, 160961785787056128, 11330322120000000000, 857485369051342438400, 69444841895469240729600, 5993559601317659925282816, 549242871950650346384195584
Offset: 2
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
- G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
- R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275. See Th. 6.
- Vincenzo Librandi, Table of n, a(n) for n = 2..100
- A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-Cell Polycubes in n-3 Dimensions, J. Int. Seq. 15 (2012) #12.8.4.
- M. Shalah, Formulae and growth rates of animals on cubical and triangular lattices, PhD Thesis, Israel Inst. Techn. (2017).
-
[2^(n-3)*n^(n-5)*(n-2)*(2*n^2-6*n+9): n in [2..20]]; // Vincenzo Librandi, May 26 2011
-
Table[2^(n-3)n^(n-5)(n-2)(2n^2-6n+9),{n,2,30}] (* Harvey P. Dale, Nov 27 2024 *)
A290738
a(n) is the number of fixed polycubes of size n that are proper in n-5 dimensions.
Original entry on oeis.org
0, 1, 758, 154741, 20762073, 2323972976, 240154383596, 24109617950208, 2417940914461280, 246158020396388352, 25680108955640400000, 2760762217507260989440, 306854769192894226859776, 35326258772832011339956224, 4216066596599500902861091840, 521775392548443914240000000000
Offset: 5
- G. Barequet and M. Shalah, Counting n-cell polycubes proper in n-k dimensions, European Journal of Combinatorics, 63(2017), 146-163.
- G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, In Proceedings of the 8th European Conference on Combinatorics, Graph Theory and Applications, 49(2015), 145-151, 2015.
- G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, In Video Review at the 31st Symposium on Computational Geometry, 19-22, 2015.
- M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, Youtube, 2015.
A259015 gives the number of n-cell polycubes that are proper in n-4 dimensions.
A125761
Triangle read by rows: T(n,k) (n>=1) gives the number of n-indecomposable polyominoes with k cells (k >= 1).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 12, 6, 5, 1, 1, 1, 1, 2, 5, 12, 35, 108, 73, 76, 80, 25, 15, 15, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 1044, 1475, 2205, 2643, 983, 1050, 1208, 958, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 15980, 26548, 48766, 79579, 99860, 45898, 60433, 89890, 109424, 84312, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 245955, 458397, 948201, 1857965, 3160371, 4153971, 2217787, 3402761, 5855953, 9067535, 11402651, 9170285, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 3807508, 7710844, 17354771, 37983463
Offset: 1
Triangle begins:
1;
1,1,2,1,1;
1,1,2,5,12,6,5,1,1;
1,1,2,5,12,35,108,73,76,80,25,15,15;
1,1,2,5,12,35,108,369,1285,1044,1475,2205,2643,983,1050,1208,958;
1,1,2,5,12,35,108,369,1285,4655,17073,15980,26548,48766,79579,99860,45898,60433,89890,109424,84312;
1,1,2,5,12,35,108,369,1285,4655,17073,63600,238591,245955,458397,948201,1857965,3160371,4153971,2217787,3402761,5855953,9067535,11402651,9170285;
1,1,2,5,12,35,108,369,1285,4655,17073,63600,238591,901971,3426576,3807508,7710844,17354771,37983463,...
Showing 1-10 of 17 results.
Comments