cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001168 Number of fixed polyominoes with n cells.

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 216, 760, 2725, 9910, 36446, 135268, 505861, 1903890, 7204874, 27394666, 104592937, 400795844, 1540820542, 5940738676, 22964779660, 88983512783, 345532572678, 1344372335524, 5239988770268, 20457802016011, 79992676367108, 313224032098244, 1228088671826973
Offset: 0

Views

Author

Keywords

Comments

Number of rookwise connected patterns of n square cells.
N. Madras proved in 1999 the existence of lim_{n->oo} a(n+1)/a(n), which is the real limit growth rate of the number of polyominoes; and hence, this limit is equal to lim_{n->oo} a(n)^{1/n}, the well-known Klarner's constant. The currently best-known lower and upper bounds on this constant are 3.9801 (Barequet et al., 2006) and 4.6496 (Klarner and Rivest, 1973), respectively. But see also Knuth (2014).

Examples

			a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 378-382.
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
  • A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 478. (Table 16.10 has 56 terms of this sequence.)
  • I. Jensen. Counting polyominoes: a parallel implementation for cluster computing. LNCS 2659 (2003) 203-212, ICCS 2003
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000105, A000988, A006746, A056877, A006748, A056878, A006747, A006749, A142886, A144553, row sums of A308359, A210986 (bisection), A210987 (bisection).
A006762 is another version.
Excluding a(0), 8th and 9th row of A366767.

Programs

  • Mathematica
    See Jaime Rangel-Mondragón's article.

Formula

For asymptotics, see Knuth (2014).
a(n) = 8*A006749(n) + 4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 2*A056877(n) + 2*A056878(n) + 2*A144553(n) + A142886(n); the number of fixed polyominoes is calculatable according to multiples of the numbers of the various symmetries of the polyomino. - John Mason, Sep 06 2017

Extensions

Extended to n=28 by Tomás Oliveira e Silva
Extended to n=46 by Iwan Jensen
Verified (and one more term found) by Don Knuth, Jan 09 2001
Richard C. Schroeppel communicated Jensen's calculation of the first 56 terms, Feb 21 2005
Gill Barequet commented on Madras's proof from 1999 of the limit growth rate of this sequence, and provided references to the currently best-known bounds on it, May 24 2011
Incorrect Mathematica program removed by Jean-François Alcover, Mar 24 2015
a(0) = 1 added by N. J. A. Sloane, Jun 24 2020

A195739 Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 0, 1, 17, 32, 0, 1, 61, 348, 400, 0, 1, 214, 2836, 8640, 6912, 0, 1, 758, 21225, 129288, 254800, 153664, 0, 1, 2723, 154741, 1688424, 6160640, 8749056, 4194304, 0, 1, 9908, 1123143, 20762073, 125055400, 313921008, 343901376, 136048896
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2011

Keywords

Comments

According to Barequet-Barequet-Rote, p. 261, the value DX(7, 6) = 134209 given by W. F. Lunnon is incorrect; it should be 153664, see A127670. - Alexander Knapp, May 13 2013

Examples

			Triangle begins with DX(1,0):
n\d 0  1   2     3      4      5      6
---------------------------------------
1...1
2...0  1
3...0  1   4
4...0  1  17    32
5...0  1  61   348    400
6...0  1 214  2836   8640   6912
7...0  1 758 21225 129288 254800 153664
...
		

Crossrefs

Columns give A006762, A006763, A006764. Cf. A195738, A049430.
Diagonals (with formulas) are A127670, A171860, A191092, A259015, A290738.

A006764 Number of fixed properly-4-dimensional polyominoes with n cells.

Original entry on oeis.org

0, 0, 0, 0, 400, 8640, 129288, 1688424, 20762073, 248384816, 2937307716, 34618858308
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000105. A column of A195739.

Formula

a(n) = A151830(n) - 4 * A006763(n) - 6 * A006762(n) - 4 for n > 1. - Sean A. Irvine, Jul 28 2017

A176673 Partial sums of A001168.

Original entry on oeis.org

1, 3, 9, 28, 91, 307, 1067, 3792, 13702, 50148, 185416, 691277, 2595167, 9800041, 37194707, 141787644, 542583488, 2083404030, 8024142706, 30988922366, 119972435149, 465505007827, 1809877343351, 7049866113619, 27507668129630
Offset: 1

Views

Author

Jonathan Vos Post, Apr 23 2010

Keywords

Comments

Partial sums of number of fixed polyominoes with n cells, for n > 0.

Examples

			a(6) = 1 + 2 + 6 + 19 + 63 + 216 = 307.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001168(i).

A192074 a(n) = A066158(n)-2 with a(0)=1.

Original entry on oeis.org

0, 0, 4, 16, 53, 172, 568, 1906, 6471, 22200, 76884, 268350, 942649, 3329606, 11817580, 42120338, 150682448, 540832272, 1946892840, 7027047846, 25424079337, 92185846606, 334925007126, 1219054432488, 4444545298877, 16229462702150, 59347661054362
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2011

Keywords

Crossrefs

Showing 1-5 of 5 results.