A000988
Number of one-sided polyominoes with n cells.
Original entry on oeis.org
1, 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759, 476270, 1802312, 6849777, 26152418, 100203194, 385221143, 1485200848, 5741256764, 22245940545, 86383382827, 336093325058, 1309998125640, 5114451441106, 19998172734786, 78306011677182, 307022182222506, 1205243866707468, 4736694001644862
Offset: 0
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
- S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
- W. F. Lunnon, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47,49 from Toshihiro Shirakawa).
- W. F. Lunnon, Counting multidimensional polyominoes, Computer Journal 18(4) (1975), 366-367.
- Ed Pegg, Jr., Illustrations of polyforms.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [Broken link]
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [From the internet archive]
- D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
- Toshihiro Shirakawa, Harmonic Magic Square, pp. 3-4: Enumeration of Polyominoes considering the symmetry, April 2012.
- Eric Weisstein's World of Mathematics, Polyomino.
- Wikipedia, Polyomino.
A049430
Triangle read by rows: T(n,d) is the number of distinct properly d-dimensional polyominoes (or polycubes) with n cells (n >= 1, d >= 0).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 11, 3, 0, 1, 34, 77, 35, 6, 0, 1, 107, 499, 412, 104, 11, 0, 1, 368, 3442, 4888, 2009, 319, 23, 0, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 0, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 0, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 4 2
0 1 11 11 3
0 1 34 77 35 6
0 1 107 499 412 104 11
0 1 368 3442 4888 2009 319 23
0 1 1284 24128 57122 36585 8869 951 47
0 1 4654 173428 667959 647680 231574 36988 2862 106
0 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
...
Cf.
A330891 (cumulative sums of the rows).
A195739
Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 0, 1, 17, 32, 0, 1, 61, 348, 400, 0, 1, 214, 2836, 8640, 6912, 0, 1, 758, 21225, 129288, 254800, 153664, 0, 1, 2723, 154741, 1688424, 6160640, 8749056, 4194304, 0, 1, 9908, 1123143, 20762073, 125055400, 313921008, 343901376, 136048896
Offset: 1
Triangle begins with DX(1,0):
n\d 0 1 2 3 4 5 6
---------------------------------------
1...1
2...0 1
3...0 1 4
4...0 1 17 32
5...0 1 61 348 400
6...0 1 214 2836 8640 6912
7...0 1 758 21225 129288 254800 153664
...
- Robert A. Russell, Table of n, a(n) for n = 1..60
- R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica 30 (2010), pp. 257-275.
- W. F. Lunnon, Counting multidimensional polyominoes, Computer Journal 18 (1975), no. 4, pp. 366-367.
A049429
Triangle T(n,d) = number of distinct d-dimensional polyominoes (or polycubes) with n cells (0 < d < n).
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 11, 11, 3, 1, 34, 77, 35, 6, 1, 107, 499, 412, 104, 11, 1, 368, 3442, 4888, 2009, 319, 23, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
Offset: 2
From _Robert A. Russell_, Aug 09 2022: (Start)
Triangle begins with T(2,1):
n\d 1 2 3 4 5 6 7 8 9 10
2 1
3 1 1
4 1 4 2
5 1 11 11 3
6 1 34 77 35 6
7 1 107 499 412 104 11
8 1 368 3442 4888 2009 319 23
9 1 1284 24128 57122 36585 8869 951 47
10 1 4654 173428 667959 647680 231574 36988 2862 106
11 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
(End)
- Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
A355054
Number of chiral pairs of multidimensional n-ominoes with cell centers determining n-3 space.
Original entry on oeis.org
6, 54, 297, 1341, 5468, 20519, 72168, 242886, 791780, 2514453, 7814225, 23863941, 71835845, 213601046, 628450974, 1832227629, 5299559865, 15221688836, 43450246045, 123345029035, 348417524877, 979803281560
Offset: 5
a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
-
sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x,0,nmax}], x], 5]
A125761
Triangle read by rows: T(n,k) (n>=1) gives the number of n-indecomposable polyominoes with k cells (k >= 1).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 12, 6, 5, 1, 1, 1, 1, 2, 5, 12, 35, 108, 73, 76, 80, 25, 15, 15, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 1044, 1475, 2205, 2643, 983, 1050, 1208, 958, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 15980, 26548, 48766, 79579, 99860, 45898, 60433, 89890, 109424, 84312, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 245955, 458397, 948201, 1857965, 3160371, 4153971, 2217787, 3402761, 5855953, 9067535, 11402651, 9170285, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 3807508, 7710844, 17354771, 37983463
Offset: 1
Triangle begins:
1;
1,1,2,1,1;
1,1,2,5,12,6,5,1,1;
1,1,2,5,12,35,108,73,76,80,25,15,15;
1,1,2,5,12,35,108,369,1285,1044,1475,2205,2643,983,1050,1208,958;
1,1,2,5,12,35,108,369,1285,4655,17073,15980,26548,48766,79579,99860,45898,60433,89890,109424,84312;
1,1,2,5,12,35,108,369,1285,4655,17073,63600,238591,245955,458397,948201,1857965,3160371,4153971,2217787,3402761,5855953,9067535,11402651,9170285;
1,1,2,5,12,35,108,369,1285,4655,17073,63600,238591,901971,3426576,3807508,7710844,17354771,37983463,...
A355052
Number of oriented multidimensional n-ominoes with cell centers determining n-3 space.
Original entry on oeis.org
1, 17, 131, 709, 3350, 14337, 57507, 218746, 803384, 2870707, 10044838, 34548917, 117224825, 393290329, 1307200931, 4310348599, 14116544717, 45959805027, 148860350902, 479938536114, 1541025955958, 4929773150983
Offset: 4
a(4)=1 because there is just one tetromino (with four cells aligned) in 1-space. a(5)=17 because there are 5 achiral and 6 chiral pairs of pentominoes in 2-space, excluding the 1-D straight pentomino.
A355055
Number of achiral multidimensional n-ominoes with cell centers determining n-3 space.
Original entry on oeis.org
1, 5, 23, 115, 668, 3401, 16469, 74410, 317612, 1287147, 5015932, 18920467, 69496943, 249618639, 879998839, 3053446651, 10452089459, 35360685297, 118416973230, 393038044024, 1294335897888, 4232938101229, 13757913332396
Offset: 4
a(4)=1 as there is only one tetromino in one-space. a(5)=5 because there are 5 achiral pentominoes in 2-space, excluding the 1-D straight pentomino.
A006758
Number of strictly 2-dimensional one-sided polyominoes with n cells.
Original entry on oeis.org
0, 0, 0, 1, 6, 17, 59, 195, 703, 2499, 9188, 33895, 126758, 476269, 1802311, 6849776, 26152417, 100203193, 385221142, 1485200847, 5741256763, 22245940544, 86383382826, 336093325057, 1309998125639, 5114451441105, 19998172734785, 78306011677181, 307022182222505, 1205243866707467, 4736694001644861, 18635412907198669
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006759
Number of one-sided strictly 3-dimensional polyominoes with n cells.
Original entry on oeis.org
0, 0, 0, 3, 17, 131, 915, 6553, 47026, 341888, 2505449, 18534827, 138224058, 1038594326, 7856087894, 59782042225, 457359506070, 3515816578512, 27143401299351, 210372490707568
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A000105 = A@000105;
A000162 = A@000162;
a[n_] := A000162[[n]] - A000105[[n + 1]];
a /@ Range[16] (* Jean-François Alcover, Jan 16 2020 *)
Showing 1-10 of 12 results.
Comments