cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073370 Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(1+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
Riordan array (1/(1-x-2*x^2), x/(1-x-2*x^2)). - Paul Barry, Mar 15 2005
Subtriangle (obtained by dropping the first column) of the triangle given by (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013
The number of ternary words of length n having k letters equal 2 and 0,1 avoid runs of odd lengths. - Milan Janjic, Jan 14 2017

Examples

			Triangle begins as:
    1;
    1,   1;
    3,   2,   1;
    5,   7,   3,   1;
   11,  16,  12,   4,   1;
   21,  41,  34,  18,   5,   1;
   43,  94,  99,  60,  25,   6,   1;
   85, 219, 261, 195,  95,  33,   7,   1;
  171, 492, 678, 576, 340, 140,  42,   8,   1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  3,  2,  1;
  0,  5,  7,  3,  1;
  0, 11, 16, 12,  4,  1;
  0, 21, 41, 34, 18,  5,  1; - _Philippe Deléham_, Feb 19 2013
		

Crossrefs

Columns: A001045 (k=0), A073371 (k=1), A073372 (k=2), A073373 (k=3), A073374 (k=4), A073375 (k=5), A073376 (k=6), A073377 (k=7), A073378 (k=8), A073379 (k=9).
Cf. A002605 (row sums), A006130 (diagonal sums), A073399, A073400.

Programs

  • Magma
    A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
    [A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
    
  • Maple
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
    flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022

Formula

T(n, m) = Sum_{k=0..floor((n-m)/2)} binomial(n-k, m)*binomial(n-m-k, k)*2^k, if n > m, else 0.
Sum_{k=0..n} T(n, k) = A002605(n+1).
T(n, m) = (1*(n-m+1)*T(n, m-1) + 2*2*(n+m)*T(n-1, m-1))/((1^2 + 4*2)*m), n >= m >= 1, T(n, 0) = A001045(n+1), n >= 0, else 0.
T(n, m) = (p(m-1, n-m)*1*(n-m+1)*T(n-m+1) + q(m-1, n-m)*2*(n-m+2)*T(n-m))/(m!*9^m), n >= m >= 1, with T(n) = T(n, m=0) = A001045(n+1), else 0; p(k, n) = Sum_{j=0..k} (A(k, j)*n^(k-j) and q(k, n) = Sum_{j=0..k} B(k, j)*n^(k-j), with the number triangles A(k, m) = A073399(k, m) and B(k, m) = A073400(k, m).
G.f.: 1/(1-(1+2*x)*x)^(m+1) = 1/((1+x)*(1-2*x))^(m+1), m >= 0, for column m (without leading zeros).
T(n, 0) = A001045(n), T(1, 1) = 1, T(n, k) = 0 if k>n, T(n, k) = T(n-1, k-1) + 2*T(n-2, k) + T(n-1, k) otherwise. - Paul Barry, Mar 15 2005
G.f.: (1+x)*(1-2*x)/(1-x-2*x^2-x*y) for the triangle including the 1, 0, 0, 0, 0, ... column. - R. J. Mathar, Aug 11 2015
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (1 + x)*R(n-1,x) + 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 - 2*x/(1 + ... + x/(1 - 2*x/(1)))) (with 2*n partial numerators). Cf. A110441. (End)
From G. C. Greubel, Oct 01 2022: (Start)
T(n, k) = binomial(n,k)*Sum_{j=0..floor((n-k)/2)} 2^j*binomial(2*j, j)*binomial(n-k, 2*j)/binomial(n, j).
T(n, k) = binomial(n, k)*Hypergeometric2F1([(k-n)/2, (k-n+1)/2], [-2*n], -8).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006130(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000045(n+1). (End)

A130330 Triangle read by rows, the matrix product A130321 * A000012, both taken as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 7, 3, 1, 15, 7, 3, 1, 31, 15, 7, 3, 1, 63, 31, 15, 7, 3, 1, 127, 63, 31, 15, 7, 3, 1, 255, 127, 63, 31, 15, 7, 3, 1, 511, 255, 127, 63, 31, 15, 7, 3, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, May 24 2007

Keywords

Comments

Row sums are A000295: (1, 4, 11, 26, 57, 120, 247, ...), the Eulerian numbers.
T(n,k) is the number of length n+1 binary words containing at least two 1's such that the first 1 is preceded by exactly (k-1) 0's. T(3,2) = 3 because we have: 0101, 0110, 0111. - Geoffrey Critzer, Dec 31 2013
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A110441. - Peter Bala, Jul 22 2014
From Wolfdieter Lang, Oct 28 2019:(Start)
This triangle gives the solution of the following problem. Iterate the function f(x) = (x - 1)/2 to obtain f^{[k]}(x) = (x - (2^(k+1) - 1))/2^(k+1), for k >= 0. Find the positive integer x values for which the iterations stay integer and reach 1. Only odd integers x qualify, and the answer is x = x(n) = 2*T(n, 0) = 2*(2^(n+1) - 1), with the iterations T(n,0), ..., T(n,n) = 1.
This iteration is motivated by a problem posed by Johann Peter Hebel (1760 - 1826) in "Zweites Rechnungsexempel" from 1804, with the solution x = 31 corresponding to row n = 3 [15 7 3 1]. The egg selling woman started with 31 = T(4, 0) eggs and after four customers obtained, one after the other, always a number of eggs which was one half of the woman's remaining number of eggs plus 1/2 (selling only whole eggs, of course) she had one egg left. See the link and reference. [For Hebel's first problem see a comment in A000225.]
(End)

Examples

			First few rows of the triangle T(n, k):
n\k     0    1    2    3   4   5   6  7  8  9 10 11 12 ...
0:      1
1:      3    1
2:      7    3    1
3      15    7    3    1
4:     31   15    7    3   1
5:     63   31   15    7   3   1
6:    127   63   31   15   7   3   1
7:    255  127   63   31  15   7   3  1
8:    511  255  127   63  31  15   7  3  1
9:   1023  511  255  127  63  31  15  7  3  1
10:  2047 1023  511  255 127  63  31 15  7  3  1
11:  4095 2047 1023  511 255 127  63 31 15  7  3  1
12:  8191 4095 2047 1023 511 255 127 63 31 15  7  3  1
... reformatted and extended. - _Wolfdieter Lang_, Oct 28 2019
		

References

  • Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 36-37, Solution, S. 40-41. See also the link below.

Crossrefs

Programs

  • Haskell
    a130330 n k = a130330_row n !! (k-1)
    a130330_row n = a130330_tabl !! (n-1)
    a130330_tabl = iterate (\xs -> (2 * head xs + 1) : xs) [1]
    -- Reinhard Zumkeller, Mar 31 2012
  • Mathematica
    nn=12;a=1/(1- x);b=1/(1-2x);Map[Select[#,#>0&]&,Drop[CoefficientList[Series[a x^2 b/(1-y x),{x,0,nn}],{x,y}],2]]//Grid  (* Geoffrey Critzer, Dec 31 2013 *)

Formula

A130321 * A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...) and A000012 = (1; 1,1; 1,1,1; ...).
In every column k with offset n = k: 2^(m+1) - 1 = A000225(m+1) = (1, 3, 7, 15, ...), for m >= 0.
G.f.: 1/((1-y*x)*(1-x)*(1-2x)). - Geoffrey Critzer, Dec 31 2013
T(n, k) = 2^((n - k) + 1) - 1, n >= 0, k = 0..n. - Wolfdieter Lang, Oct 28 2019

Extensions

More terms from Geoffrey Critzer, Dec 31 2013
Edited by Wolfdieter Lang, Oct 28 2019

A116414 Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).

Original entry on oeis.org

1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412.
Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
    1;
    4,   1;
   13,   8,   1;
   40,  42,  12,   1;
  121, 184,  87,  16,  1;
  364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,   1;
  0,   4,   1;
  0,  13,   8,   1;
  0,  40,  42,  12,   1;
  0, 121, 184,  87,  16,  1;
  0, 364, 731, 496, 148, 20, 1;
  ... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Oct 31 2013
G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - Philippe Deléham, Oct 31 2013
From Peter Bala, Oct 07 2019: (Start)
O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + ....
Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y.
The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End)

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)

A111806 Riordan array (1/(1+3x+2x^2),x/(1+3x+2x^2)).

Original entry on oeis.org

1, -3, 1, 7, -6, 1, -15, 23, -9, 1, 31, -72, 48, -12, 1, -63, 201, -198, 82, -15, 1, 127, -522, 699, -420, 125, -18, 1, -255, 1291, -2223, 1795, -765, 177, -21, 1, 511, -3084, 6562, -6768, 3840, -1260, 238, -24, 1, -1023, 7181, -18324, 23276, -16758, 7266, -1932, 308, -27, 1, 2047, -16398, 49029, -74616, 65870
Offset: 0

Views

Author

Paul Barry, Aug 18 2005

Keywords

Comments

Signed version of A110441. Factors as (1/(1+x),x/(1+x))*((1-x)/(1+x),x(1-x)/(1+x)), or inverse binomial transform of A080246. Inverse of little Schroeder number array A110440. Row sums are A108520. Diagonal sums are (-1)^n*A001906(n+1).

Examples

			Triangle starts
1;
-3,1;
7,-6,1;
-15,23,-9,1;
31,-72,48,-12,1;
		

Formula

T(n,k)=-3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 04 2013
Showing 1-5 of 5 results.