A323711 Numbers k such that k, 2*k, and 3*k are anagrams of each other.
142857, 285714, 1402857, 1428570, 1428597, 1429857, 2857014, 2857140, 2859714, 2985714, 14002857, 14028570, 14028597, 14029857, 14285700, 14285970, 14285997, 14298570, 14298597, 14299857, 15623784, 15843762, 17438256, 17562438, 18243756, 21584376, 23784156, 24375618, 24381756
Offset: 1
Examples
The first entry, 142857, is well known for having n, 2*n, 3*n, 4*n, 5*n and 6*n all being anagrams. The next two numbers for which that happens are 1428570 and 1429857.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A023086, numbers where n and 2*n are anagrams.
Programs
-
Java
char[] digits1, digits2, digits3; int val1, val2, val3; for (int value=10; value<25000000; value++) { digits1 = Integer.toString(value).toCharArray(); digits2 = Integer.toString(2*value).toCharArray(); digits3 = Integer.toString(3*value).toCharArray(); if (digits1.length == digits3.length) { Arrays.sort(digits1); Arrays.sort(digits2); Arrays.sort(digits3); val1 = Integer.parseInt(new String(digits1)); val2 = Integer.parseInt(new String(digits2)); val3 = Integer.parseInt(new String(digits3)); if ((val1 == val2) && (val1 == val3)) { System.out.print(value + ","); } } }
-
Python
A323711_list = [n for n in range(9,10**7,9) if sorted(str(n)) == sorted(str(2*n)) == sorted(str(3*n))] # Chai Wah Wu, Feb 02 2019
Comments