cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Darrah Chavey

Darrah Chavey's wiki page.

Darrah Chavey has authored 3 sequences.

A323711 Numbers k such that k, 2*k, and 3*k are anagrams of each other.

Original entry on oeis.org

142857, 285714, 1402857, 1428570, 1428597, 1429857, 2857014, 2857140, 2859714, 2985714, 14002857, 14028570, 14028597, 14029857, 14285700, 14285970, 14285997, 14298570, 14298597, 14299857, 15623784, 15843762, 17438256, 17562438, 18243756, 21584376, 23784156, 24375618, 24381756
Offset: 1

Author

Darrah Chavey, Jan 24 2019

Keywords

Comments

We assume entries have no leading zeros, so that n = 53617824 is not in the sequence, even though 2*n = 107235648 and 3*n = 160853472 are anagrams of 053617824.
From Chai Wah Wu, Feb 01 2019: (Start)
The first digit of terms is either 1, 2 or 3. Numbers of the form 140..028570..0 and 29..98570..0140..0 are terms where the number of 9's and 0's can be zero.
More generally, let a number n be written in decimal as xxxzzz where x and z are arbitrary digits and xxx, zzz are not empty strings. Let m be the number that is written as zzz in decimal and k be the least power of 10 that is strictly greater than m.
If 3*m < k, then n is a term if and only if xxx0..0zzz0..0 is a term. Note that this condition is satisfied if the first digit of m is 0, 1 or 2.
If 2*k <= 3*m, then n is a term if and only if xxx9..9zzz0..0 is a term. Note that this condition is satisfied if the first digit of m is 7, 8, or 9.
Not all terms with digits 0 and 9 are formed this way, see for instance the terms 137965842 and 157836042.
The first term where the first digit is 3 is a(1507) = 3051267489.
(End)
From David A. Corneth, Feb 02 2019: (Start)
Terms are multiples of 9.
Proof: as 3*k and k have the same digits, k is divisible by 3. If k isn't divisible by 9 then it has a different digital sum from 3*k. Therefore, k is divisible by 9. (End)

Examples

			The first entry, 142857, is well known for having n, 2*n, 3*n, 4*n, 5*n and 6*n all being anagrams. The next two numbers for which that happens are 1428570 and 1429857.
		

Crossrefs

Subsequence of A023086, numbers where n and 2*n are anagrams.

Programs

  • Java
    char[] digits1, digits2, digits3;
    int val1, val2, val3;
    for (int value=10; value<25000000; value++) {
         digits1 = Integer.toString(value).toCharArray();
         digits2 = Integer.toString(2*value).toCharArray();
         digits3 = Integer.toString(3*value).toCharArray();
         if (digits1.length == digits3.length) {
              Arrays.sort(digits1);
              Arrays.sort(digits2);
              Arrays.sort(digits3);
              val1 = Integer.parseInt(new String(digits1));
              val2 = Integer.parseInt(new String(digits2));
              val3 = Integer.parseInt(new String(digits3));
              if ((val1 == val2) && (val1 == val3)) {
                   System.out.print(value + ",");
              }
         }
    }
    
  • Python
    A323711_list = [n for n in range(9,10**7,9) if sorted(str(n)) == sorted(str(2*n)) == sorted(str(3*n))] # Chai Wah Wu, Feb 02 2019

A250122 Coordination sequence for planar net 3.12.12.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0

Author

Darrah Chavey, Nov 23 2014

Keywords

Comments

Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Cf. A298805.

Programs

  • Mathematica
    Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)

Formula

From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023

Extensions

a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014

A007780 Losing initial configurations in 2-hole Tchuka Ruma.

Original entry on oeis.org

1, 2, 3, 6, 9, 11, 18, 20, 27, 30, 54, 81, 162, 168, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442
Offset: 1

Author

Keywords

Comments

The 2-hole Tchuka Ruma game cannot be won for the initial seeds 3^i (i>=1) or 2*3^i (i>=0). Though a sufficient condition, this is not necessary, as can be seen from the terms a(6)=11, a(8)=20, a(10)=30 and a(14)=168. - Pab Ter (pabrlos2(AT)yahoo.com), Nov 08 2005
If any further sporadic term exists, then it exceeds 6973568802. - Sean A. Irvine, Jan 25 2018

Formula

Conjectures from Colin Barker, Jan 25 2018: (Start)
G.f.: x*(1 + 2*x - 7*x^5 - 9*x^6 - 13*x^7 - 27*x^8 - 30*x^9 - 27*x^10 - 9*x^11 - 75*x^13 - 243*x^14 - 18*x^15) / (1 - 3*x^2).
a(n) = 3*a(n-2) for n>2.
(End)

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 08 2005
More terms from Sean A. Irvine, Jan 25 2018