cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A027468 9 times the triangular numbers A000217.

Original entry on oeis.org

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0

Views

Author

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014

Examples

			The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
		

Crossrefs

Programs

  • Magma
    [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    [seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    a(n)=9*n*(n+1)/2
    
  • Sage
    [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021

Formula

Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A038764 a(n) = (9*n^2 + 3*n + 2)/2.

Original entry on oeis.org

1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Coefficients of x^2 of certain rook polynomials (for n>=1; see p. 18 of the Riordan paper). - Emeric Deutsch, Mar 08 2004
a(n) is also the least weight of self-conjugate partitions having n+1 different parts such that each part is congruent to 1 modulo 3. The first such self-conjugate partitions, corresponding to a(n) = 0, 1, 2, 3, are 1, 4+3, 7+4+4+4+3, 10+7+7+7+4+4+4+3. - Augustine O. Munagi, Dec 18 2008

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.

Crossrefs

Reflection of A060544 in A081272.
Second column of A024462. Also = A064641(n+1, 2).
Shallow diagonal of triangular spiral in A051682.
Partial sums of A122709.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
  • Sage
    a = lambda n: hypergeometric([-n, -2], [1], 3)
    print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
    

Formula

a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023

Extensions

More terms from James Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018

A227776 a(n) = 6*n^2 + 1.

Original entry on oeis.org

1, 7, 25, 55, 97, 151, 217, 295, 385, 487, 601, 727, 865, 1015, 1177, 1351, 1537, 1735, 1945, 2167, 2401, 2647, 2905, 3175, 3457, 3751, 4057, 4375, 4705, 5047, 5401, 5767, 6145, 6535, 6937, 7351, 7777, 8215, 8665, 9127, 9601, 10087, 10585, 11095, 11617, 12151
Offset: 0

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Least splitter is defined for x < y at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Conjecture: a(n) is the least splitter of s(n) and s(n+1), where s(n) = n*sin(1/n).

Examples

			The first eight least splitting rationals for {n*sin(1/n), n >=1 } are these fractions: 6/7, 24/25, 54/55, 96/97, 150/151, 216/217, 294/295, 384/385.
		

Crossrefs

Programs

  • Mathematica
    z = 40; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = n*Sin[1/n]; t = Table[r[s[n], s[n + 1]], {n, 1, z}] (* least splitting rationals *); fd = Denominator[t] (* Peter J. C. Moses, Jul 15 2013 *)
    Array[6 #^2 + 1 &, 45] (* Michael De Vlieger, Nov 08 2017 *)
    LinearRecurrence[{3,-3,1},{7,25,55},50] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    a(n)=6*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1 + 4*x + 7*x^2)/(1 - x)^3.
a(n) = A287326(2n, n). - Kolosov Petro, Nov 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(6))*coth(Pi/sqrt(6)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(6))*csch(Pi/sqrt(6)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(6))*sinh(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(6))*csch(Pi/sqrt(6)).(End)
From Leo Tavares, Nov 20 2021: (Start)
a(n) = A003154(n+1) - A008458(n). See Hexagonal Star Rays illustration.
a(n) = A003215(n) + A028896(n-1).
a(n) = A054554(n+1) + A046092(n).
a(n) = A080855(n) + A045943(n).
a(n) = A172043(n) + A002378(n).
a(n) = A033581(n) + 1. (End)
E.g.f.: exp(x)*(1 + 6*x + 6*x^2). - Stefano Spezia, Sep 14 2024

Extensions

a(0) = 1 prepended by Robert P. P. McKone, Oct 09 2023

A080853 Square array of generalized polygonal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 19, 11, 1, 1, 6, 25, 37, 33, 16, 1, 1, 7, 36, 61, 67, 51, 22, 1, 1, 8, 49, 91, 113, 106, 73, 29, 1, 1, 9, 64, 127, 171, 181, 154, 99, 37, 1, 1, 10, 81, 169, 241, 276, 265, 211, 129, 46, 1, 1, 11, 100, 217, 323, 391, 406, 365, 277
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Examples

			Rows begin with n>=0, k>=0
1 1 1 1 1 ...
1 2 4 7 11 ...
1 3 9 19 33 ...
1 4 16 37 67 ...
1 5 25 61 113 ...
		

Crossrefs

Programs

  • Maple
    A080853 := proc(n,k)
        binomial(k,0)+n*binomial(k,1)+n^2*binomial(k,2) ;
    end proc:
    seq( seq(A080853(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021

Formula

T(n, k)=C(k, 0)+C(k, 1)n+C(k, 2)n^2=(n^2*k^2-(n^2-2n)*k+2)/2 =(k(k-1)*n^2+2k*n+2)/2
Row n has g.f. (1+(n-2)x+(n^2-n+1)x^2)/(1-x)^3.
Column k has g.f. (C(k-1, 0)+(C(k+1, 2)-2)*x+C(k-1, 2)*x^2)/(1-x)^3.
Diagonals are given by (n^4+(2k-1)*n^3+((k-1)^2+1)*n^2+(1-(k-1)^2)*n+2)/2.
Antidiagonal sums are 1, 2, 4, 9, 22, 53, 119,... = (d+1)*(2*d^4-7*d^3+27*d^2-22*d+120)/120 = sum_{k=0..d} T(d-k,k), first differences in A116701, d>=0. - R. J. Mathar, Oct 01 2021

A283394 a(n) = 3*n*(3*n + 7)/2 + 4.

Original entry on oeis.org

4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2017

Keywords

Comments

Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.

Crossrefs

Sequences with formula 3*n*(3*n + 2*r + 3)/2 + r^2: A038764 (r=-1), A027468 (r=0), A081271 (r=1), this sequence (r=2), A027468 (r=3; offset: -1), A080855 (r=4; offset: -2).

Programs

  • Magma
    [3*n*(3*n+7)/2+4: n in [0..50]];
    
  • Mathematica
    Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{4,19,43},50] (* Harvey P. Dale, Mar 02 2019 *)
  • Maxima
    makelist(3*n*(3*n+7)/2+4, n, 0, 50);
    
  • PARI
    a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
  • Python
    [3*n*(3*n+7)/2+4 for n in range(50)]
    
  • Sage
    [3*n*(3*n+7)/2+4 for n in range(50)]
    

Formula

O.g.f.: (4 + 7*x - 2*x^2)/(1 - x)^3.
E.g.f.: (8 + 30*x + 9*x^2)*exp(x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A081271(-n-2).
a(n) = 3*A095794(n+1) + 1.
a(n) = A034856(3*n+2) = A101881(6*n+2) = A165157(6*n+3) = A186349(6*n+3).
The inverse binomial transform yields 4, 15, 9, 0 (0 continued), therefore:
a(n) = 4*binomial(n,0) + 15*binomial(n,1) + 9*binomial(n,2).

A081272 Downward vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 25, 85, 181, 313, 481, 685, 925, 1201, 1513, 1861, 2245, 2665, 3121, 3613, 4141, 4705, 5305, 5941, 6613, 7321, 8065, 8845, 9661, 10513, 11401, 12325, 13285, 14281, 15313, 16381, 17485, 18625, 19801, 21013, 22261, 23545, 24865, 26221, 27613, 29041, 30505
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A081271 in the horizontal A051682.
Binomial transform of (1, 24, 36, 0, 0, 0, .....).
One of the six verticals of a triangular spiral which starts with 1 (see the link). Other verticals are A060544, A081589, A080855, A157889, A038764. - Yuriy Sibirmovsky, Sep 18 2016.

Crossrefs

Programs

  • Mathematica
    Table[n^2 + (n + 1)^2, {n, 0, 300, 3}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 85}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    Table[n^2 + (n + 1)^2, {n, 0, 150, 3}] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    x='x+O('x^99); Vec((1+22*x+13*x^2)/(1-x)^3) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = C(n, 0) + 24*C(n, 1) + 36*C(n, 2).
a(n) = 18*n^2 + 6*n + 1.
G.f.: (1 + 22*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 24*x + 18*x^2). - Stefano Spezia, Mar 07 2023

A145995 a(n) = 8 - 12*n + 5*n^2.

Original entry on oeis.org

1, 4, 17, 40, 73, 116, 169, 232, 305, 388, 481, 584, 697, 820, 953, 1096, 1249, 1412, 1585, 1768, 1961, 2164, 2377, 2600, 2833, 3076, 3329, 3592, 3865, 4148, 4441, 4744, 5057, 5380, 5713, 6056, 6409, 6772, 7145, 7528, 7921, 8324, 8737, 9160, 9593, 10036
Offset: 1

Views

Author

Artur Jasinski, Oct 26 2008

Keywords

Comments

For n > 1, a(n) is square if and only if n-1 is in A081016.
a(n) and a(-n) give all numbers m such that 5*m-4 is a square. - Bruno Berselli, Feb 03 2016

Examples

			A081016(0) = 1 and a(2) = 2^2 = 4; A081016(1) = 6 and a(7) = 13^2 = 169; A081016(2) = 40 and a(41) = 89^2 = 7921; A081016(3) = 273 and a(274) = 610^2 = 372100; A081016(4) = 1870 and a(1871) = 4181^2 = 17480761. - _Klaus Brockhaus_, Oct 29 2008
		

Crossrefs

Cf. A195162 (numbers m such that 5*m+4 is a square).

Programs

  • GAP
    List([1..50], n-> 8-12*n+5*n^2); # G. C. Greubel, Jul 15 2019
  • Magma
    [8-12*n+5*n^2: n in [1..50]]; // G. C. Greubel, Jul 15 2019
    
  • Mathematica
    Table[8 -12x +5x^2, {x,50}]
    s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 450, 10}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
    LinearRecurrence[{3, -3, 1}, {1, 4, 17}, 51] (* G. C. Greubel, Jan 30 2016 *)
  • PARI
    for(n=1, 50, print1(8-12*n+5*n^2, ",")) \\ Klaus Brockhaus, Oct 29 2008
    
  • Sage
    [8-12*n+5*n^2 for n in (1..50)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = a(n-1) + 10*n - 17, with a(1)=1. - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Jan 30 2016 (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3, a(1)=1, a(2)=4, a(3)=17.
G.f.: x*(1 + x + 8*x^2)/(1-x)^3.
E.g.f.: (5*x^2 - 7*x + 8)*exp(x) - 8. (End)

Extensions

Corrected definition; corrected comment; added keyword. - Klaus Brockhaus, Oct 29 2008

A121574 Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

Row sums are A006190(n+1); diagonal sums are A077939.
Inverse is A121575.
A generalized Delannoy number triangle.
Antidiagonal sums are A002478. - Philippe Deléham, Nov 10 2011.
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = 2 + x, R(3,x) = 4 + 5*x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)

Examples

			Triangle begins
   1;
   2,   1;
   4,   5,   1;
   8,  16,   8,   1;
  16,  44,  37,  11,   1;
  32, 112, 134,  67,  14,  1;
  64, 272, 424, 305, 106, 17, 1;
		

Crossrefs

Cf. Diagonals: A000012, A016789, A080855, A000079, A053220.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->Sum([0..n-k],j->Binomial(k,j)*Binomial(n-j,k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018
  • Magma
    [[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    T:=(n,k)->add(binomial(k,j)*binomial(n-j,k)*2^(n-k-j),j=0..n-k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

Number array T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-k-j).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1). - Philippe Deléham, Nov 10 2011
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = (x + 2)*R(n-1,x) + x*R(n-2,x) with R(1,x) = 1 and R(2,x) = x + 2. - Peter Bala, Feb 07 2024

A128101 Triangle read by rows: T(n,k) is the number of ways to tile a 4 X n rectangle with k pieces of 2 X 2 tiles and 4(n-k) pieces of 1 X 1 tiles (0<=k<=2*floor(n/2)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 4, 1, 9, 16, 8, 1, 1, 12, 37, 34, 9, 1, 15, 67, 105, 65, 15, 1, 1, 18, 106, 248, 250, 108, 16, 1, 21, 154, 490, 726, 522, 176, 24, 1, 1, 24, 211, 858, 1736, 1824, 994, 260, 25, 1, 27, 277, 1379, 3604, 5148, 4090, 1770, 385, 35, 1, 1, 30, 352, 2080
Offset: 0

Views

Author

Emeric Deutsch, Feb 19 2007

Keywords

Comments

Row 2n has 2n+1 terms; row 2n+1 has 2n+1 terms.

Examples

			Triangle starts:
1;
1;
1,3,1;
1,6,4;
1,9,16,8,1;
1,12,37,34,9;
1,15,67,105,65,15,1;
		

References

  • S. Heubach, Tiling an m X n area with squares of size up to k X k (m <= 5), Congressus Numerantium 140 (1999), pp. 43-64.

Crossrefs

Cf. A054854 (row sums), A008585, A080855, A128102.

Programs

  • Maple
    G:=(1-t*z)/(1-z-t*z-2*t*z^2-t^2*z^2+t^2*z^3+t^3*z^3): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[#, t]& /@ CoefficientList[(1 - t z)/(1 - z - t z - 2 t z^2 - t^2 z^2 + t^2 z^3 + t^3 z^3) + O[z]^12, z]  // Flatten (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.=(1-tz)/(1-z-tz-2tz^2-t^2*z^2+t^2*z^3+t^3*z^3).
Sum (T(n,k), k=0..2*floor(n/2) ) = A054854(n).
T(n,1)=3(n-1)=A008585(n-1).
T(n,2)=A080855(n-2).
Sum(k*T(n,k), k=0..2*floor(n/2)) = A128102(n).
T(n,3) = (n-3)*(9*n^2-63*n+124)/2, n>=3. - R. J. Mathar, Aug 23 2016
T(n,4) = (3*n-13)*(9*n^3-123*n^2+602*n-1024)/8, n>=4. - R. J. Mathar, Aug 23 2016
Showing 1-9 of 9 results.