A064642
Triangle defined in A064641 read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 7, 1, 8, 22, 29, 1, 11, 46, 104, 133, 1, 14, 79, 251, 517, 650, 1, 17, 121, 497, 1369, 2669, 3319, 1, 20, 172, 869, 2986, 7541, 14179, 17498, 1, 23, 232, 1394, 5746, 17642, 42031, 77027, 94525, 1, 26, 301, 2099, 10108, 36482, 103696, 236933
Offset: 0
Triangle begins
1;
1, 2;
1, 5, 7;
1, 8, 22, 29;
...
A038764
a(n) = (9*n^2 + 3*n + 2)/2.
Original entry on oeis.org
1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- Colin Barker, Table of n, a(n) for n = 0..1000
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Shallow diagonal of triangular spiral in
A051682.
-
LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
-
a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
-
Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
-
a = lambda n: hypergeometric([-n, -2], [1], 3)
print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
A063020
Reversion of y - y^2 - y^3 + y^4.
Original entry on oeis.org
0, 1, 1, 3, 9, 32, 119, 466, 1881, 7788, 32868, 140907, 611871, 2685732, 11896906, 53115412, 238767737, 1079780412, 4909067468, 22424085244, 102865595140, 473678981820, 2188774576575, 10145798119530, 47165267330415, 219839845852692, 1027183096151244, 4810235214490986
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- A. Mironov and A. Morozov, Algebra of quantum C-polynomials, arXiv:2009.11641 [hep-th], 2020.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
- Index entries for reversions of series
-
A:= series(RootOf(Z-_Z^2-_Z^3+_Z^4-x), x, 21): seq(coeff(A,x,i), i=0..20); # _Brian Drake, Sep 20 2007
-
CoefficientList[InverseSeries[Series[y - y^2 - y^3 + y^4, {y, 0, 30}], x], x]
-
a(n):=sum((sum(binomial(j,n-3*k+2*j-1)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-1,n-1),k,0,n-1)/n; /* Vladimir Kruchinin, Oct 11 2011 */
-
a(n):=sum((-1)^(i)*binomial(n+i-1,i)*binomial(3*n-i-2,n-i-1),i,0,n-1)/n; /* Vladimir Kruchinin, Feb 13 2014 */
-
x='x+O('x^66); concat([0],Vec(serreverse(x-x^2-x^3+x^4))) \\ Joerg Arndt, May 28 2013
-
def b(n):
h = binomial(3*n + 1, n) * hypergeometric([-n, n + 1], [-3*n - 1], -1) / (n + 1)
return simplify(h)
print([0] + [b(n) for n in range(27)]) # Peter Luschny, Sep 21 2023
A201159
Irregular triangle read by rows: number of {0,1,2}-shifted Schroeder paths of length n and area k.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 5, 5, 5, 3, 1, 1, 1, 2, 2, 4, 5, 8, 10, 12, 13, 15, 17, 16, 13, 9, 4, 1, 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 23, 27, 34, 40, 47, 52, 56, 57, 57, 56, 50, 39, 26, 14, 5, 1, 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 26, 32, 42, 50, 63
Offset: 0
Triangle begins
1
1 1
1 1 2 2 1
1 1 2 2 4 5 5 5 3 1
1 1 2 2 4 5 8 10 12 13 15 17 16 13 9 4 1
...
Cf. S-shifted Schroeder paths for various S:
A201075 {0,1},
A201076 {0,2},
A201079 {0,2,4,6...},
A201080 {0,1,3,5...}.
-
gf = Expand /@ FixedPoint[1 + x # + q x (1 + q x) # (Normal@# /. {x :> q^2 x}) + O[x]^7 &, 0];
Flatten[Reverse[CoefficientList[#, q]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 03 2024 *)
A133656
Number of below-diagonal paths from (0,0) to (n,n) using steps (1,0), (0,1) and (2k-1,1), k a positive integer.
Original entry on oeis.org
1, 2, 6, 23, 99, 456, 2199, 10962, 56033, 292094, 1546885, 8299058, 45010492, 246377362, 1359339710, 7551689783, 42206697209, 237156951618, 1338917298708, 7591380528489, 43207023511013, 246773061257046, 1413889039642479, 8124356140582768, 46807462792903984
Offset: 0
a(4) = 99 since there are 90 Schroeder paths (A006318) from (0,0) to (4,4) plus DNNEN, DNENN, DENNN, DdNN, DNdN, DNNd, EDNNN, ENDNN and dDNN, where E=(1,0), N=(0,1), D=(3,1) and d=(1,1).
-
A:=series(RootOf(1+_Z*(x-1)+_Z^2*(x-x^2)+_Z^3*x^2-_Z^4*x^3), x, 21): seq(coeff(A,x,i), i=0..20);
-
a[n_] := Sum[Binomial[n+k, n] * Sum[Binomial[j, -n - 3k + 2j - 2]* (-1)^(n+k-j+1) * Binomial[n+k+1, j], {j, 0, k+n+1}], {k, 0, n}]/(n+1);
a /@ Range[0, 24] (* Jean-François Alcover, Oct 06 2019, after Vladimir Kruchinin *)
-
a(n):=sum(binomial(n+k,n)*sum(binomial(j,-n-3*k+2*j-2)*(-1)^(n+k-j+1) *binomial(n+k+1,j),j,0,k+n+1),k,0,n)/(n+1); /* Vladimir Kruchinin, Oct 11 2011 */
A260774
Certain directed lattice paths.
Original entry on oeis.org
1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0
-
b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
`if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
`if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 21 2021
-
b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)
A064643
Bidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: Fill an triangular array in alternating directions. Let the first element of each row in that direction be equal to 1. Each next entry is given by T(n,k) = T(n,k +/- 1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), where the +/- depends on which is the previous element in the direction one is filling in the row. The final number of row n gives a(n).
Original entry on oeis.org
1, 2, 6, 22, 105, 631, 4603, 39469, 388870, 4327322, 53670985, 734069672, 10975379510, 178080287645, 3116286236549, 58502460526469
Offset: 0
A223092
Triangle read by rows: let T(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,0), (1,-1) and (0,-1); n-th row of triangle gives T(n,n), T(n,n-1), ..., T(n,0).
Original entry on oeis.org
1, 1, 2, 1, 4, 7, 1, 6, 18, 29, 1, 8, 33, 86, 133, 1, 10, 52, 179, 431, 650, 1, 12, 75, 316, 978, 2238, 3319, 1, 14, 102, 505, 1874, 5406, 11941, 17498, 1, 16, 133, 754, 3235, 11020, 30241, 65086, 94525, 1, 18, 168, 1071, 5193, 20202, 64698, 171045, 360897, 520508, 1, 20, 207, 1464, 7896, 34362, 124455, 380400, 977040, 2029490, 2910895
Offset: 0
Triangle begins:
[1]
[1, 2]
[1, 4, 7]
[1, 6, 18, 29]
[1, 8, 33, 86, 133]
[1, 10, 52, 179, 431, 650]
[1, 12, 75, 316, 978, 2238, 3319]
...
The T(n,k) array begins:
4: 0 0 0 0 1 10 ...
3: 0 0 0 1 8 52 ...
2: 0 0 1 6 33 179 ...
1: 0 1 4 18 86 431 ...
0: 1 2 7 29 133 650 ...
-------------------------
k/n:0 1 2 3 4 5 ...
T(5,2) = T(5,3) + T(4,3) + T(4,2) + T(4,1) = 52 + 8 + 33 + 86 = 179.- _Philippe Deléham_, Mar 29 2013
This is also Dziemianczuk's array N(-i,i+j) read by antidiagonals:
1,2,7,29,133,650,3319,17498, ...
1,4,18,86,431,2238,11941,65086, ...
1,6,33,179,978,5406,30241,171045, ...
1,8,52,316,1874,11020,64698,380400, ...
1,10,75,505,3235,20202,124455,761160, ...
... - _N. J. A. Sloane_, Dec 05 2013
-
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(n<0 or k<0 or k>n, 0, add(T(n-l[1], k-l[2]),
l=[[1, 1], [1, 0], [1, -1], [0, -1]]) ))
end:
seq(seq(T(n, n-j), j=0..n), n=0..10); # Alois P. Heinz, Apr 08 2013
-
max = 10; T[0, 0] = 1; T[n_ /; n >= 0, k_ /; 0 <= k <= max] := T[n, k] = T[n, k+1]+T[n-1, k+1]+T[n-1, k]+T[n-1, k-1]; T[n_, k_] = 0; Table[Table[T[n, k], {k, n, 0, -1}], {n, 0, max}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)
A260772
Certain directed lattice paths.
Original entry on oeis.org
1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..100
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
- Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, Solving Third Order Linear Difference Equations in Terms of Second Order Equations, arXiv:2402.11121 [math.AC], 2024. See p. 3.
-
# A260772 satisfies a 4th-order recurrence that can be reduced
# to a 2nd-order recurrence given in this program t:
t := proc(n) options remember;
if n <= 1 then
[-1/2, 0, 1, 4][2*n+2]
else
(16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
/( n*(2*n+1)*(5*n-7) )
fi
end:
A260772 := proc(n)
t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
end:
seq(A260772(i),i=0..100);
# Mark van Hoeij, Jul 14 2022
-
a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
-
a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019
A232972
Main diagonal of array P(i,j) mentioned in A064642.
Original entry on oeis.org
1, 5, 46, 497, 5746, 68948, 846889, 10570001
Offset: 0
Showing 1-10 of 13 results.
Comments