cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A232972 Main diagonal of array P(i,j) mentioned in A064642.

Original entry on oeis.org

1, 5, 46, 497, 5746, 68948, 846889, 10570001
Offset: 0

Views

Author

N. J. A. Sloane, Dec 05 2013

Keywords

Crossrefs

A064641 Unidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: construct an array in which the first element of each row is 1 and subsequent entries are given by T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1). The last number in row n gives a(n).

Original entry on oeis.org

1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, 16487795, 94393105, 545337200, 3175320607, 18615098837, 109783526821, 650884962908, 3877184797783, 23193307022861, 139271612505361, 839192166392276, 5072534905324615, 30749397292689194
Offset: 0

Views

Author

Floor van Lamoen, Oct 03 2001

Keywords

Comments

Also the number of paths from (0,0) to (n,n) not rising above y=x, using steps (1,0), (0,1), (1,1) and (2,1). For example, the 7 paths to (2,2) are dd, den, end, enen, Dn, eenn and edn, where e=(1,0), n=(0,1), d=(1,1) and D=(2,1). - Brian Drake, Aug 01 2007
For another interpretation as the number of walks of a certain type, see A223092 and the link below. - N. J. A. Sloane, Mar 29 2013
Hankel transform is 3^C(n+1,2). - Paul Barry, Jan 26 2009

Examples

			The array begins
        1
      1   2
    1   5   7
  1   8  22  29
G.f. = 1 + 2*x + 7*x^3 + 29*x^4 + 133*x^5 + 650*x^6 + 3319*x^7 + ...
		

Crossrefs

Delannoy numbers: A008288, table: A064642. Cf. A038764, A223092.
Row sums of A201159.

Programs

  • Maple
    A:= series( (1-x-sqrt(1-6*x-3*x^2)) / (2*x*(1+x)),x, 21): seq(coeff(A,x,i), i=0..20); # Brian Drake, Aug 01 2007
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x-3*x^2])/(2*x*(1+x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • Maxima
    a(n):=sum(binomial(n+i,n)*sum(binomial(j,-n+2*j-i-2)*binomial(n+1,j),j,0,n+1),i,0,n)/(n+1); /* Vladimir Kruchinin, May 12 2011 */
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x*(1-x)/(1+x+x^2)+O(x^(n+2))),n+1)) /* Paul Barry */
    

Formula

G.f.: (1-x-sqrt(1-6x-3x^2)) / (2x(1+x)). - Brian Drake, Aug 01 2007
G.f.: 1/(1-2x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-.... (continued fraction). - Paul Barry, Jan 26 2009
a(n) = sum(i=0..n, binomial(n+i,n)*sum(j=0..n+1, binomial(j,-n+2*j-i-2)*binomial(n+1,j)))/(n+1). - Vladimir Kruchinin, May 12 2011
Recurrence: (n+1)*a(n) = (5*n-4)*a(n-1) + 9*(n-1)*a(n-2) + 3*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3*(sqrt(6)+sqrt(2))*(3+2*sqrt(3))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
G.f.: 1 / (1 - x - (x+x^2) / (1 - x - (x+x^2) / ... )) (continued fraction). - Michael Somos, Mar 30 2014
0 = a(n)*(+9*a(n+1) + 54*a(n+2) + 33*a(n+3) - 12*a(n+4)) + a(n+1)*(+78*a(n+2) + 60*a(n+3) - 27*a(n+4)) + a(n+2)*(+36*a(n+2) + 34*a(n+3) - 14*a(n+4)) + a(n+3)*(+4*a(n+3) + a(n+4)) for all n >= 0. - Michael Somos, Nov 05 2014
a(n) = (-1)^n * (n+1) + Sum_{k=0..n-1} (a(k) + (-1)^k) * (a(n-1-k) + (-1)^(n-1-k)). - Seiichi Manyama, Jul 18 2025

A279212 Fill an array by antidiagonals upwards; in the top left cell enter a(0)=1; thereafter, in the n-th cell, enter the sum of the entries of those earlier cells that can be seen from that cell.

Original entry on oeis.org

1, 1, 2, 2, 6, 11, 4, 15, 39, 72, 8, 37, 119, 293, 543, 16, 88, 330, 976, 2364, 4403, 32, 204, 870, 2944, 8373, 20072, 37527, 64, 464, 2209, 8334, 26683, 74150, 176609, 331072, 128, 1040, 5454, 22579, 79534, 246035, 673156, 1595909, 2997466, 256, 2304, 13176, 59185, 226106, 762221, 2303159, 6231191, 14721429, 27690124
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2016

Keywords

Comments

"That can be seen from" means "that are on the same row, column, diagonal, or antidiagonal as".
Inspired by A279967.
Conjecture: Every column has a finite number of odd entries, and every row and diagonal have an infinite number of odd entries. - Peter Kagey, Mar 28 2020. The conjecture about columns is true, see that attached pdf file from Alec Jones.
The "look" keyword refers to Peter Kagey's bitmap. - N. J. A. Sloane, Mar 29 2020
The number of sequences of queen moves from (1, 1) to (n, k) in the first quadrant moving only up, right, diagonally up-right, or diagonally up-left. - Peter Kagey, Apr 12 2020
Column 0 gives A011782. In the column 1, the only powers of 2 occur at positions A233328(k) with value a(k(k+1)/2 + 1), k >=1 (see A335903). Conjecture: Those are the only multiple occurrences of numbers greater than 1 in this sequence (checked through the first 2000 antidiagonals). - Hartmut F. W. Hoft, Jun 29 2020

Examples

			The array begins:
i/j|  0    1    2     3     4      5      6       7       8
-------------------------------------------------------------
0  |  1    2   11    72   543   4403  37527  331072 2997466 ...
1  |  1    6   39   293  2364  20072 176609 1595909 ...
2  |  2   15  119   976  8373  74150 673156 ...
3  |  4   37  330  2944 26683 246035 ...
4  |  8   88  870  8334 79534 ...
5  | 16  204 2209 22579 ...
6  | 32  464 5454 ...
7  | 64 1040 ...
8  |128 ...
  ...
For example, when we get to the antidiagonal that reads 4, 15, 39, ..., the reason for the 39 is that from that cell we can see one cell that has been filled in above it (containing 11), one cell to the northwest (2), two cells to the west (1, 6), and two to the southwest (4, 15), for a total of a(8) = 39.
The next pair of duplicates greater than 2 is 2^20 = 1048576 = a(154) = a(231), located in antidiagonals 17 = A233328(2) and 21, respectively. For additional duplicate numbers in this sequence see A335903.  - _Hartmut F. W. Hoft_, Jun 29 2020
		

Crossrefs

Cf. A064642 is analogous if a cell can only "see" its immediate neighbors.
See A280026, A280027 for similar sequences based on a spiral.

Programs

  • Mathematica
    s[0, 0] = 1; s[i_, j_] := s[i, j] = Sum[s[k, j], {k, 0, i-1}] + Sum[s[i, k], {k, 0, j-1}] + Sum[s[i+j-k, k], {k, 0, j-1}] + Sum[s[i-k-1, j-k-1], {k, 0, Min[i, j] - 1}]
    aDiag[m_] := Map[s[m-#, #]&, Range[0, m]]
    a279212[n_] := Flatten[Map[aDiag, Range[0, n]]]
    a279212[9] (* data - 10 antidiagonals;  Hartmut F. W. Hoft, Jun 29 2020 *)

Formula

T(0, 0) = 1; T(i, j) = Sum_{k=0..i-1} T(k, j) + Sum_{k=0..j-1} T(i, k) + Sum_{k=0..j-1} T(i+j-k, k) + Sum_{k=0..min(i, j)-1} T(i-k-1, j-k-1), with recursion upwards along antidiagonals. - Hartmut F. W. Hoft, Jun 29 2020

A278181 Hexagonal spiral constructed on the nodes of the triangular net in which each new term is the sum of its neighbors.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 19, 22, 29, 33, 42, 47, 59, 74, 82, 99, 108, 129, 155, 169, 202, 243, 265, 316, 378, 411, 486, 575, 622, 728, 861, 1017, 1099, 1280, 1487, 1595, 1832, 2116, 2440, 2609, 2980, 3425, 3933, 4198, 4779, 5473, 6262, 6673, 7570, 8631, 9828, 10450, 11800, 13389, 15267, 17383
Offset: 0

Views

Author

Omar E. Pol, Nov 14 2016

Keywords

Comments

To evaluate a(n) consider the neighbors of a(n) that are present in the spiral when a(n) should be a new term in the spiral.

Examples

			Illustration of initial terms as a spiral:
.
.             22 - 19 - 14
.             /          \
.           29    3 - 2   12
.           /    /     \   \
.         33    4   1 - 1   9
.           \    \         /
.           42    5 - 7 - 8
.             \
.             47 - 59 - 74
.
a(16) = 47 because the sum of its two neighbors is 42 + 5 = 47.
a(17) = 59 because the sum of its three neighbors is 47 + 5 + 7 = 59.
a(18) = 74 because the sum of its three neighbors is 59 + 7 + 8 = 74.
a(19) = 82 because the sum of its two neighbors is 74 + 8 = 82.
		

Crossrefs

Programs

  • Mathematica
    A278181[0] = A278181[1] = 1; A278181[n_] := A278181[n] = With[{lev = Ceiling[1/6 (-3 + Sqrt[3] Sqrt[3 + 4 n])]}, With[{pos = 3 lev (lev - 1) + (n - 3 lev (1 + lev))/lev*(lev - 1)}, A278181[n - 1] + A278181[Ceiling[pos]] + If[Mod[n, lev] == 0 || n - 3 lev (lev - 1) == 1, 0, A278181[Floor[pos]]] + If[3 lev (1 + lev) == n, A278181[n - 6 lev + 1], 0]]]; Array[A278181, 61, 0] (* JungHwan Min, Nov 21 2016 *)

A107783 Array defined in A064643 read in direction in which it was created.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 13, 21, 22, 1, 45, 84, 104, 105, 1, 211, 412, 562, 630, 631, 1, 1263, 2500, 3558, 4285, 4602, 4603, 1, 9207, 18305, 26560, 33180, 37573, 39468, 39469, 1, 78939, 157243, 230496, 293794, 342944, 375058, 388869, 388870, 1, 777741
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2005

Keywords

Crossrefs

Programs

  • Maple
    A107783 := proc(n,k) option remember ; if n < 0 or k < 0 or k > n then 0 ; elif n =0 then 1; elif n mod 2 = 1 then if n = k then 1; else A107783(n,k+1)+A107783(n-1,k-1)+A107783(n-1,k)+A107783(n-2,k-1) ; fi ; else if k = 0 then 1; else A107783(n,k-1)+A107783(n-1,k-1)+A107783(n-1,k)+A107783(n-2,k-1) ; fi ; fi ; end: for n from 0 to 11 do if ( n mod 2 ) = 1 then kstrt := n ; else kstrt := 0 ; fi ; kend := n-kstrt : for k from kstrt to kend by sign(kend-kstrt) do printf("%d,",A107783(n,k)) ; od: od: # R. J. Mathar, Aug 13 2007

Extensions

More terms from R. J. Mathar, Aug 13 2007
Showing 1-5 of 5 results.