A384704 Triangle T(i, j), 1 <= j <= i, read by rows. T(i, j) is the smallest number k that has i odd divisors and whose symmetric representation of sigma, SRS(k), has j parts; when no such k exists then T(i, j) = -1.
1, 6, 3, 18, -1, 9, 30, 78, 15, 21, 162, -1, -1, -1, 81, 90, 666, 45, 75, 63, 147, 1458, -1, -1, -1, -1, -1, 729, 210, 1830, 135, 105, 165, 189, 357, 903, 450, -1, 225, -1, 1225, -1, 441, -1, 3025, 810, 53622, 405, -1, 1377, 1875, 567, 1539, 4779, 6875, 118098, -1, -1, -1, -1, -1, -1, -1, -1, -1, 59049
Offset: 1
Examples
The first 12 rows of triangle T(i, j): i\j 1 2 3 4 5 6 7 8 9 10 11 12 1: 1 2: 6 3 3: 18 -1 9 4: 30 78 15 21 5: 162 -1 -1 -1 81 6: 90 666 45 75 63 147 7: 1458 -1 -1 -1 -1 -1 729 8: 210 1830 135 105 165 189 357 903 9: 450 -1 25 -1 1225 -1 441 -1 3025 10: 810 53622 405 -1 1377 1875 567 1539 4779 6875 11: 118098 -1 -1 -1 -1 -1 -1 -1 -1 -1 59049 12: 630 16290 315 495 525 1071 1287 1197 2499 6069 13915 29095 ...
Crossrefs
Programs
-
Mathematica
(* function partsSRS[ ] is defined in A377654 *) setupT[d_] := Module[{list=Table[0, {i, d}, {j, i}], s, t}, For[s=1, s<=d, s++, For[t=1, t<=s, t++, If[(OddQ[s]&&Not[PrimeQ[s]]&&EvenQ[t]&&1
Comments