cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hartmut F. W. Hoft

Hartmut F. W. Hoft's wiki page.

Hartmut F. W. Hoft has authored 135 sequences. Here are the ten most recent ones:

A384704 Triangle T(i, j), 1 <= j <= i, read by rows. T(i, j) is the smallest number k that has i odd divisors and whose symmetric representation of sigma, SRS(k), has j parts; when no such k exists then T(i, j) = -1.

Original entry on oeis.org

1, 6, 3, 18, -1, 9, 30, 78, 15, 21, 162, -1, -1, -1, 81, 90, 666, 45, 75, 63, 147, 1458, -1, -1, -1, -1, -1, 729, 210, 1830, 135, 105, 165, 189, 357, 903, 450, -1, 225, -1, 1225, -1, 441, -1, 3025, 810, 53622, 405, -1, 1377, 1875, 567, 1539, 4779, 6875, 118098, -1, -1, -1, -1, -1, -1, -1, -1, -1, 59049
Offset: 1

Author

Hartmut F. W. Hoft, Jun 07 2025

Keywords

Comments

T(i, j) = -1 for i >= 1 odd, nonprime, j even with 1 < j < i; also for i prime and all j with 1 < j < i.
The single value T(10, 4) = -1 has been verified; see the conjecture below.
T(i, i) <= 3^(i-1) for all i >=1 . Equality holds for all primes i. T(i, i) = A318843(i), for all i >= 1.
A038547(i) is the smallest number with exactly i odd divisors. Thus odd number A038547(i) occurs in row i of triangle T(i, j) so that A038547 is a subsequence of this sequence. For i prime, A038547(i) = T(i, i). For 4 <= i <= 10^9 nonprime, A038547(i) is in the third column, T(i, 3), except for i=8; furthermore, the first part of SRS(A038547(i)) has width 1 and size (A038547(i)+1)/2.
T(i, 1) <= 2 * 3^(i-1) and it is even for all i >1. Equality holds for all primes i.
T(i, 2) <= 2 * 3^(i/2-1) * p for all even i where p is the smallest prime greater than 4 * 3^(i/2-1). Equality holds when i = 2 * h where h is prime.
The positive numbers in columns 1..6 are subsequences of A174973, A239929, A279102, A280107, A320066, A320511, respectively.
Conjectures:
All entries T(i, j) in columns j >= 3 are odd.
T(i, 1)/2 is odd for all i > 1.
T(i, 1) = 2 * T(i, 3) for all nonprime i > 3, for i = 3, but not for i = 8.
T(i, 2)/2 is odd for all even i > 2.
T(i, 3) = A038547(i) for all nonprime i > 3, except i = 8.
T(2*i, 2*j) = -1 for j >= 2 and all prime i satisfying i >= prime(j+1).
From Omar E. Pol, Jun 08 2025: (Start)
T(i,j) is also the smallest number k whose symmetric representation of sigma(k) has i subparts and j parts, or -1 if no such k exists.
Observations:
At least for i < 12 if i is prime then T(i,1) = 2*T(i,i).
At least for i < 12 if i is prime then all terms in row i are -1's except the first and the last term. (End)

Examples

			The first 12 rows of triangle T(i, j):
   i\j      1     2   3   4    5    6    7    8    9   10    11    12
   1:       1
   2:       6     3
   3:      18    -1   9
   4:      30    78  15  21
   5:     162    -1  -1  -1   81
   6:      90   666  45  75   63  147
   7:    1458    -1  -1  -1   -1   -1  729
   8:     210  1830 135 105  165  189  357  903
   9:     450    -1  25  -1 1225   -1  441   -1 3025
  10:     810 53622 405  -1 1377 1875  567 1539 4779 6875
  11:  118098    -1  -1  -1   -1   -1   -1   -1   -1   -1 59049
  12:     630 16290 315 495  525 1071 1287 1197 2499 6069 13915 29095
  ...
		

Programs

  • Mathematica
    (* function partsSRS[ ] is defined in A377654 *)
    setupT[d_] := Module[{list=Table[0, {i, d}, {j, i}], s, t}, For[s=1, s<=d, s++, For[t=1, t<=s, t++, If[(OddQ[s]&&Not[PrimeQ[s]]&&EvenQ[t]&&1
    				

A378471 Numbers m whose symmetric representation of sigma(m), SRS(m), has at least 2 parts the first of which has width 1.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105
Offset: 1

Author

Hartmut F. W. Hoft, Nov 27 2024

Keywords

Comments

Numbers m = 2^k * q, k >= 0 and q > 1 odd, without odd prime factors p < 2^(k+1).
This sequence is a proper subsequence of A238524. Numbers 78 = A370206(1) = A238524(55) and 102 = A237287(72) are not in this sequence since their width pattern (A341969) is 1210121.
A000079 is not a subsequence since SRS(2^k), k>=0, consists of a single part of width 1.
Let m = 2^k * q, k >= 0 and q > 1 odd, be a number in this sequence and s the size of the first part of SRS(m) which has width 1 and consists of 2^(k+1) - 1 legs of width 1. Therefore, s = Sum_{i=1..2^(k+1)-1} a237591(m, i) = a235791(m, 1) - a235791(m, 2^(k+1)) = ceiling((m+1)/1 - (1+1)/2) - ceiling((m+1)/2^(k+1) - (2^(k+1) + 1)/2) = (2^(k+1) - 1)(q+1)/2. In other words, point (m, s) is on the line s(m) = (2^(k+1) - 1)/2^(k+1) * m + (2^(k+1) - 1)/2.
For every odd number m in this sequence, the first part of SRS(m) has size (m+1)/2.
Let u = 2^k * Product_{i=1..PrimePi(2^(k+1)} p_i, where p_i is the i-th prime, and let v be the number of elements in this sequence that are in the set V = {m = 2^k * q | 1 < m <= u } then T(j + t*v, k) = T(j, k) + t*u, 1 <= j and 1 <= t, holds for the elements in column k.

Examples

			a(5) = 10 is in the sequence since SRS(10) = {9, 9} consists of 2 parts of width 1 and of sizes 9 = (2^2 - 1)(5+1)/2.
a(15) = 25 is in the sequence since the first part of SRS(25) = {13, 5, 13} has width 1 and has size 13 = (2^1 - 1)(25+1)/2.
a(28) = 44 is in the sequence since SRS(44) = {42, 42} has width 1 and has size 42 = (2^3 - 1)(11+1)/2.
The upper left hand 11 X 11 section of array T(j, k) shows the j-th number m in this sequence of the form m = 2^k * q with q odd. The first part of SRS(m) of every number in column k consists of 2^(k+1) - 1 legs of width 1.
j\k| 0   1   2    3    4     5     6      7      8       9       10  ...
------------------------------------------------------------------------
1  | 3   10  44   136  592   2144  8384   32896  133376  527872  2102272
2  | 5   14  52   152  656   2272  8768   33664  133888  528896  2112512
3  | 7   22  68   184  688   2336  8896   34432  138496  531968  2118656
4  | 9   26  76   232  752   2528  9536   34688  140032  537088  2130944
5  | 11  34  92   248  848   2656  9664   35456  142592  538112  2132992
6  | 13  38  116  296  944   2848  10048  35968  144128  543232  2137088
7  | 15  46  124  328  976   3104  10432  36224  145664  544256  2139136
8  | 17  50  148  344  1072  3232  10688  37504  146176  547328  2149376
9  | 19  58  164  376  1136  3296  11072  39296  147712  556544  2161664
10 | 21  62  172  424  1168  3424  11456  39808  150272  558592  2163712
11 | 23  70  188  472  1264  3488  11584  40064  151808  559616  2180096
...
Row 1 is A246956(n), n>=1.
Column 0 is A005408(n) with T(j + 1, 0) = T(j, 0) + 2, n>=1.
Column 1 is A091999(n) with T(j + 2, 1) = T(j, 1) + 12, n>=2.
Column 2 is A270298(n) with T(j + 48, 2) = T(j, 2) + 840, n>=1.
Column 3 is A270301(n) with T(j + 5760, 3) = T(j, 3) + 240240, n>=1.
		

Programs

  • Mathematica
    (* partsSRS[] and widthPattern[ ] are defined in A377654 *)
    a378471[m_, n_] := Select[Range[m, n], Length[partsSRS[#]]>1&&widthPattern[#][[1;;2]]=={1, 0}&]
    a378471[1, 105]

A378470 a(n) is the smallest number k for which the width pattern of the symmetric representation of sigma(k), SRS(k), consists of two unimodal parts of maximum width n.

Original entry on oeis.org

3, 78, 10728, 28920, 53752896, 4157280, 278628512256, 90323520, 1658908800, 21499810560, 7487812494923563008, 13005699840, 155267279705546496147456, 111451576596480, 8599694054400, 468208581120, 4172630516011611848266349543424, 5202323481600, 21630916595004029113587563614961664, 67421367982080
Offset: 1

Author

Hartmut F. W. Hoft, Nov 27 2024

Keywords

Comments

Let the nonincreasing multiset cL = { c_1, ... , c_s } be a factorization of n, let dL = { d_1, ... , d_s } be any set of s distinct odd primes, let q = dL^(cL - 1) = d_1^(c_1 - 1) * ... * d_s^(c_s - 1), and let k satisfy 2^k < q < 2^(k+1). Then SRS(2^k * q) is unimodal of maximum height n, 2^k * q has 2n odd divisors and its width pattern has 2n-1 entries. The smallest possible choice for 2^k * q is with the increasing sequence of odd primes d_i = p_(i+1), 1 <= i <= s. The overall smallest 2^k * q is the minimum among all factorizations of n. The smallest number m for which SRS(m) has two unimodal parts of maximum width n requires the additional prime factor r > 2^(k+1) * q which yields m = 2^k * q * r.
This sequence is column 2 in the array of A367377 and a(2) = A370206(1).

Examples

			a(2) = 78  is in the sequence since SRS(78) consists of two parts with width pattern 1 2 1 0 1 2 1 and 78 is the smallest number with those properties.
a(3) = 10728 = 2^3 * 3^2 * 149 is in the sequence since SRS(10728) consists of two parts with width pattern 1 2 3 2 1 0 1 2 3 2 1 and 10728 is the smallest number with those properties.
a(6) = 4157280 = 2^5 * 3^2 * 5 * 2887 is in the sequence. The two factorizations of 6 are {6} and {3, 2} so that with 3^5 = 243 and 3^2 * 5^1 = 45 the inequality 2^5 < 45 < 2^6 determines the single unimodular SRS(32 * 45) of maximum width 6, A250071(6) = 1440. Since 2887 is the smallest prime exceeding 2^6 * 3^2 * 5, 4157280 is the smallest number with SRS(4157280) consisting of two unimodular parts of maximum width 6.
		

Programs

  • Mathematica
    (* function f[ ] by T. D. Noe in A162247 *)
    sF[n_] := Min[Map[Apply[Times, Prime[Range[2, Length[#]+1]]^#]&, Map[Reverse[#-1]&, f[n]]]]
    f2U[n_] := Module[{s=sF[n], k, p}, k=Floor[Log[2, s]]; p=NextPrime[2^(k+1) s]; 2^k s p]
    a378470[n_] := Map[f2U, Range[n]]
    a378470[20]

Formula

a(p) = 2^k * 3^(p-1) * r, for odd primes p, with 2^k < 3^(p-1) < 2^(k+1) and r > 2^(k+1) * 3^(p-1) least prime, i.e., k = floor( (p-1)*(log_2 (3)) ) and r = prime( primepi(2^(k+1) * 3^(p-1)) + 1 ).

A377668 Square array read by antidiagonals upwards: T(i,j), i, j >= 1, is the smallest number m such that the symmetric presentation of sigma, SRS(m), has maximum width 3, consists of 2*i-1 parts and has 2*j-1 occurrences of maximum width 3 in its width pattern (row m of A341969).

Original entry on oeis.org

72, 2450, 648, 1225, 120050, 450, 3969, 581042, 211250, 20808, 9801, 30625
Offset: 1

Author

Hartmut F. W. Hoft, Nov 03 2024

Keywords

Comments

Maximum width 3 can occur an odd number of times in the width pattern of SRS(m) only for numbers m in this sequence for which SRS(m) has an odd number of parts. In that case width 3 must occur at the diagonal of SRS(m). However, the center part of SRS(m) need not be unimodal.

Examples

			For a(1) = 72 SRS(a(1)) is unimodal: 12321.
For a(2) = 2450 the center part of SRS(a(2)) is not unimodal: 1212123212121.
For a(11) = 9801 SRS(a(11)) consists of 9 unimodal parts with maximum width in successive parts nondecreasing to the center part of SRS(a(11)); its width pattern is: 1 0 1 0 1 2 1 0 1 2 1 0 1 2 3 2 1 0 1 2 1  0 1 2 1 0 1 0 1.
Ragged upper left hand section of table T(i, j) = m, numbers m <= 10^7, rows i denoting 2*i-1 parts in SRS(m) and columns j denoting 2*j-1 occurrences of width 3 in the width pattern of SRS(m):
i\j  1       2       3       4       5       6       7    ...
-------------------------------------------------------------
1  | 72      648     450     20808   27378   11250   1996002
2  | 2450    120050  211250  61250   81225   5281250 1531250
3  | 1225    581042  >10^7   354025  >10^7   148225  442225
4  | 3969    30625   321489  127449  1500625 2393209
5  | 9801    6175225 765625  1375929         648025
6  | 4809249 88209   2082249 983961
7  | 385641  1185921 159201  >10^7
8  | 5461569 3470769         7144929
9  | 7177041
10 | 8497225
...
		

Crossrefs

Subsequence of A376829.

Programs

  • Mathematica
    (* widthPattern[ ] and its support functions are defined in A376829 *)
    t377668[b_, {r_, c_}] := Module[{t=ConstantArray[0, {r, c}], k, wP, c3, p3}, For[k=1, k<=b, k++, wP=widthPattern[k]; If[Max[wP]==3, c3=Count[wP, 3]; If[OddQ[c3]&&c3+1<=2c, c3=(c3+1)/2; p3=Length[Select[SplitBy[wP, #!=0&], First[#]!=0&]]; If[OddQ[p3]&&p3+1<=2r, p3=(p3+1)/2; If[t[[p3, c3]]==0, t[[p3, c3]]=k]]]]]; t]
    t377668[581042, {4, 4}] (* initial 4x4 section except for T(3, 3) > 10^7 *)

A377667 Square array read by antidiagonals upwards: T(i,j) is the smallest number m such that the symmetric representation of sigma, SRS(m), has maximum width 3, consists of i parts and has 2*j occurrences of maximum width 3 in its width pattern (row m of A341969).

Original entry on oeis.org

60, 10728, 210, 315, 7620, 810, 495, 1155, 840456, 2070, 525, 28158, 945, 88410, 7290, 1275, 1995, 30555, 1575, 408150, 12810, 1287, 2625, 3003, 22365, 2835, 1313010, 45450, 6105, 3315, 10659, 18975, 382305, 11385
Offset: 1

Author

Hartmut F. W. Hoft, Nov 03 2024

Keywords

Comments

When m is odd and SRS(m) has maximum width 3 then SRS(m) has at least 3 parts because the first and last parts of SRS(m) consist of a single leg of width 1. Therefore, the first two rows of the table contain only even numbers. The numbers in the third row appear to be odd and divisible by 15.

Examples

			a(8) = T(3,2) = 1155 is the smallest example whose symmetric representation of sigma has 3 parts and 4 counts of width 3 in its width pattern.
Upper left hand section of table T(i, j) = m, numbers m <= 10^7, Columns j indicate 2j occurrences of width 3 in the width pattern of m. T(2, 7) > 10^7.
i\j| 1       2       3       4       5       6       7       8    ...
---------------------------------------------------------------------
1  | 60      210     810     2070    7290    12810   45450   146610
2  | 10728   7620    840456  88410   408150  1313010 >10^7   8596710
3  | 315     1155    945     1575    2835    11385   8505    40095
4  | 495     28158   30555   22365   382305  296835  256095  199395
5  | 525     1995    3003    18975   15147   23925   14553   186219
6  | 1275    2625    10659   35217   132957  818363  312039  1760031
7  | 1287    3315    13125   37107   44289   195415  482937  258687
8  | 6105    3861    31875   65625   132153  149435  807495  1426113
9  | 3591    10773   56889   66861   254065  797979  319599  2199477
10 | 6783    16443   57477   222999  417175  1540875 768339  4670991
11 | 18963   35397   106191  965979  1025973 1770783 2489151 7547427
12 | 90801   58653   47481   1223365 2449785 4600617 ...     ...
13 | 152019  107457  817209  2213253 1740081 4310481
14 | 257397  297087  410571  3086349 3552213 5170055
15 | 335225  815409  1360989 2079609 ...     ...
16 | 1523319 2600283 1642557 2563239
17 | 1473725 1739375 4116777 ...
18 | 4008125 3826625 3687475
19 | 7576085 7937875 ...
...  ...     ...
		

Crossrefs

Subsequence of A376829.

Programs

  • Mathematica
    (* widthPattern[ ] and its support functions are defined in A376829 *)
    t377667[b_, {r_, c_}] := Module[{t=ConstantArray[0, {r, c}], k, wP, c3, p3}, For[k=1, k<=b, k++, wP=widthPattern[k]; If[Max[wP]==3, c3=Count[wP, 3]; If[EvenQ[c3]&&c3<=2c, c3/=2; p3=Length[Select[SplitBy[wP, #!=0&], First[#]!=0&]]; If[p3<=r &&t[[p3, c3]]==0, t[[p3, c3]]=k]]]]; t]
    t377667[1540875, {10, 6}] (* complete 10 x 6 upper left hand section of table *)

A377654 Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 6241, 6561, 6889, 7225, 7569, 7921, 8649, 9025, 9409, 10201, 10609, 11449, 11881, 12321, 12769, 13225, 14161, 14641, 15129, 15625
Offset: 1

Author

Hartmut F. W. Hoft, Nov 03 2024

Keywords

Comments

Since for numbers m^2 in the sequence the width at the diagonal of SRS(m^2) is 1, the area m of its center part is odd so that this sequence is a proper subsequence of A016754 and since SRS(m^2) has an odd number of parts it is a proper subsequence of A319529. The smallest odd square not in this sequence is 225 = 15^2. SRS(225) is {113, 177, 113}, its center part has maximum width 2, its width at the diagonal is 1.
The k+1 parts of SRS(p^(2k)), p an odd prime and k >= 0, through the diagonal including the center part have areas (p^(2k-i) + p^i)/2 for 0 <= i <= k. They form a strictly decreasing sequence. Since p^(2k) has 2k+1 divisors and SRS(p^(2k)) has 2k+1 parts, all of width 1 (A357581), the even powers of odd primes form a proper subsequence of A244579. For the subsequence of squares of odd primes p, SRS(p^2) consists of the 3 parts { (p^2 + 1)/2, p, (p^2 + 1)/2 } see A001248, A247687 and A357581.
The areas of the parts of SRS(m^2) need not be in descending order through the diagonal as a(112) = 275^2 = 75625 with SRS(75625) = (37813, 7565, 3443, 1525, 715, 738, 275, 738, 715, 1525, 3443, 7565, 37813) demonstrates.
An equivalent description of the sequence is: The center part of SRS(m^2) has width 1, m is odd, and A249223(m^2, m-1) = 0.
Conjectures (true for all a(n) <= 10^8):
(1) The central part of SRS(a(n)) is the minimum of all parts of SRS(a(n)), 1 <= n.
(2) The terms in this sequence are the squares of the terms in A244579.

Examples

			The center part of SRS(a(3)) = SRS(25) has area 5, all 3 parts have width 1, and 25 with 3 divisors also belongs to A244579.
The center part of SRS(a(7)) = SRS(169) has area 13, all 3 parts have width 1, and 169 with 3 divisors also belongs to A244579.
The center part of SRS(a(10)) = SRS(441) has area 21 and width 1, but the maximum width of SRS(441) is 2. Number 441 has 9 divisors and SRS(441) has 7 parts while 21 has 4 divisors and SRS(21) has 4 parts so that 21 is in A244579 while 441 is not.
		

Crossrefs

Programs

  • Mathematica
    (* t237591 and partsSRS compute rows in A237270 and A237591, respectively *)
    (* t249223 and widthPattern are also defined in A376829 *)
    row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
    t237591[n_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
    partsSRS[n_] := Module[{widths=t249223[n], legs=t237591[n], parts, srs}, parts=widths legs; srs=Map[Apply[Plus, #]&, Select[SplitBy[Join[parts, Reverse[parts]], #!=0&], First[#]!=0&]]; srs[[Ceiling[Length[srs]/2]]]-=Last[widths]; srs]
    t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, row[n]]]
    widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]]
    centerQ[n_] := Module[{pS=partsSRS[n]}, Sqrt[n]==pS[[(Length[pS]+1)/2]]]/;OddQ[n]
    widthQ[n_] := Module[{wP=SplitBy[widthPattern[n], #!=0&]}, wP[[(Length[wP]+1)/2]]]=={1}/;OddQ[n]
    a377654[m_, n_] := Select[Map[#^2&, Range[m, n, 2]], centerQ[#]&&widthQ[#]&]/;OddQ[m]
    a377654[1, 125]

A376829 Numbers m whose symmetric representation of sigma(m) has at least a part with maximum width 3.

Original entry on oeis.org

60, 72, 84, 90, 126, 140, 144, 168, 198, 210, 216, 264, 270, 280, 288, 300, 312, 315, 330, 390, 396, 400, 440, 450, 462, 468, 495, 510, 520, 525, 528, 546, 560, 570, 576, 585, 588, 612, 616, 624, 648, 675, 684, 693, 702, 714, 728, 765, 770, 798, 800, 810, 816, 819, 828, 880, 882
Offset: 1

Author

Hartmut F. W. Hoft, Oct 05 2024

Keywords

Comments

All terms m in this sequence for which SRS(m) consists of 1 or 2 parts are even.
Let m = 2^k * q, k >= 0 and q > 2 odd, be a number in this sequence. Let c be the number of divisors r <= A003056(m) of q for which there is at most one pair of divisors s and t of q satisfying r < s < t <= min( 2^(k+1) * r, A003056(m)). Call such triples (r, s, t) good triples. Then at least one good triple exists for number m.
Let w be the number of times that width 3 occurs in the width pattern of m (row m in the triangle of A341969). Then c = (w + 1)/2 when the width at the diagonal is equal to 3 and c = w/2 otherwise.

Examples

			a(1) = 60 has one good triple 1 < 3 < 5 of odd divisors which determines 2 width 3 occurrences in its width pattern 1 2 3 2 3 2 1, and SRS(60) has width 2 at the diagonal.
a(2) = 72 has one good triple 1 < 3 < 9 of odd divisors which determines 1 width 3 occurrence in its unimodal width pattern 1 2 3 2 1, and SRS(72) has width 3 at the diagonal.
a(18) = 315 is the smallest odd number in the sequence and SRS(315) has three parts. SRS(a(1)) .. SRS(a(17)) each consists of a single part.
a(41) = 648 = 2^3 * 3^4 has two good triples 1 < 3 < 9 and 3 < 9 < 27 of odd divisors which determine 3 width 3 occurrences in its width pattern 1 2 3 2 3 2 3 2 1, and SRS(648) has width 3 at the diagonal.
a(57) = 882 has two good triples  1 < 7 < 9 and 7 < 9 < 21 of odd divisors which determine 4 width 3 occurrences in its width pattern is 1 2 1 2 3 2 3 2 1 2 3 2 3 2 1 2 1, and SRS(882) has width 1 at the diagonal.
a(514) = 7620 is the smallest number with 2 parts in its symmetric representation of sigma. It has two good triples  1 < 3 < 5 and 3 < 5 < 15 of odd divisors which determine 4 width 3 occurrences in its width pattern 1 2 3 2 3 2 1 0 1 2 3 2 3 2 1 and width 0 at the diagonal.
a(734) = 10728 is the smallest number in the sequence for which SRS(10728) has 2 parts and 2 occurrences of width 3. Each of its 2 parts therefore is unimodal: 1 2 3 2 1 0 1 2 3 2 1.
		

Crossrefs

Programs

  • Mathematica
    (* t249223[n] is row n in A249223, widthPattern[ ] is defined in A341969 *)
    t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]]
    widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]]
    a376829[m_, n_] := Select[Range[m, n], Max[widthPattern[#]]==3&]
    a376829[1, 900]

A376333 Numbers m whose symmetric representation of sigma(m), SRS(m), consists of widths 0, 1, and 2.

Original entry on oeis.org

15, 35, 45, 63, 70, 75, 77, 78, 91, 99, 102, 105, 110, 114, 117, 130, 135, 138, 143, 153, 154, 165, 170, 174, 175, 182, 186, 187, 189, 190, 195, 209, 221, 222, 225, 231, 238, 245, 246, 247, 255, 258, 266, 273, 282, 285, 286, 297, 299, 318, 322, 323, 325, 345, 348, 350
Offset: 1

Author

Hartmut F. W. Hoft, Sep 20 2024

Keywords

Comments

Sequence a(n) is the subsequence of A375611 for which the symmetric representation of sigma(a(n)) has at least two parts. The width at the diagonal can be any of the 3 widths.
Let m = 2^k * q, k >= 0 and q odd, be a number in this sequence. Let c be the number of divisors s <= A003056(m) of q for which there is at most one divisor t of q satisfying s < t <= min( 2^(k+1) * s, A003056(m). Let w be the number of times width 2 occurs in the width pattern of m (row m in the triangle of A341960). Then c = (w + 1)/2 when the width at the diagonal is equal to 2 and c = w/2 otherwise.

Examples

			SRS(a(1)) consists of 3 parts, its width pattern is 1 0 1 2 1 0 1, and c = 1 with divisor 3.
a(6) = 75 is the smallest number in this sequence which has width  0 on the diagonal; SRS(75) has 4 parts.
a(8) = 78 is the smallest number in this sequence with width pattern 1 2 1 0 1 2 1 (see A370206 and A370209).
a(35) = 225 is the smallest number in the sequence with width 1 on the diagonal; its width pattern is 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1; w = 6 and c = 3 with divisors 3, 5, and 9.
		

Programs

  • Mathematica
    (* function sDiv[ ] is defined in A375611 *)
    m012Q[n_] := Union[FoldWhileList[#1+If[OddQ[#2], 1, -1]&, sDiv[n], #1<=2&]]=={0, 1, 2}
    a376333[m_, n_] := Select[Range[m, n], m012Q]
    a376333[1, 350]

A375611 Numbers k whose symmetric representation of sigma(k) has at least a part with maximum width 2.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 63, 66, 70, 75, 77, 78, 80, 88, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 130, 132, 135, 138, 143, 150, 153, 154, 156, 160, 162, 165, 170, 174, 175, 176, 182, 186, 187, 189, 190, 192, 195, 196, 200
Offset: 1

Author

Hartmut F. W. Hoft, Aug 21 2024

Keywords

Comments

Number m = 2^k * q, k >= 0 and q odd, is in this sequence precisely when for any divisor s <= A003056(m) of q there is at most one divisor t of q satisfying s < t <= min(2^(k+1) * s, A003056(m)), and at least one such pair s < t of successive odd divisors exists. Equivalently, row m of the triangle in A249223 contains at least one 2, but no number larger than 2.

Examples

			a(4) = 18 has width pattern 1 2 1 2 1 in its symmetric representation of sigma consisting of a single part, and row 18 in the triangle of A249223 is 1 1 2 1 1.
a(9) = 35 has width pattern 1 0 1 2 1 0 1 in its symmetric representation of sigma consisting of 3 parts, and row 35 in the triangle of A249223 is 1 0 0 0 1 1 2.
Irregular triangle of rows a(n) in triangle of A341970, i.e. of positions of 1's in triangle of A237048, and for the corresponding widths to the diagonal in triangle of A341969:
a(n)| row in A341970      left half of row in A341969
6   | 1   3               1   2
12  | 1   3               1   2
15  | 1   2   3   5       1   0   1   2
18  | 1   3   4           1   2   1
20  | 1   5               1   2
24  | 1   3               1   2
28  | 1   7               1   2
30  | 1   3   4   5       1   2   1   2
35  | 1   2   5   7       1   0   1   2
36  | 1   3   8           1   2   1
...
		

Crossrefs

Column 2 of A253258.
Subsequence of A005279.
Some subsequences are A352030, A370205, A370206, A370209.

Programs

  • Mathematica
    eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
    sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
    mW2Q[n_] := Max[FoldWhileList[#1+If[OddQ[#2], 1, -1]&, sDiv[n], #1<=2&]]==2
    a375611[m_, n_] := Select[Range[m, n], mW2Q]
    a375611[1, 200]

A373609 List of repeated terms in A351903.

Original entry on oeis.org

45, 135, 225, 315, 405, 675, 945, 1035, 1125, 1155, 1215, 1305, 1365, 1485, 1575, 1755, 2079, 2275, 2475, 2565, 2835, 3105, 3375, 3465, 3825, 3915, 4095, 4275, 4550, 4725, 5175, 5265, 5355, 5625, 5775, 5985, 6050, 6237, 6370, 6525, 6615, 6650, 6825, 6885, 6975, 7245, 7315, 7425
Offset: 1

Author

Hartmut F. W. Hoft, Jun 10 2024

Keywords

Comments

It appears that all repeated terms in A351903 occur in pairs only, and either are odd or multiples of 10; true through a(4543) = 999999.
It is not known whether this sequence is infinite. A351903 is infinite, but not increasing.

Examples

			a(1) = 45 = A351903(23) = A351903(32) and A237270[45] = {23, 32, 23}.
a(2) = 135 = A351903(68) = A351903(104) and A237270[135] = {68, 104, 68}.
a(17) = 2079 = A351903(1040) = A351903(1064) and A237270[2079] = {1040, 348, 1064, 348, 1040} is the smallest number in this sequence whose symmetric representation of sigma has 5 parts.
a(137) = 22365 = A351903(11183) = A351903(11281) and A237270[22365] = {11183, 11281, 11281, 11183} is the smallest number in this sequence whose symmetric representation of sigma has 4 parts.
		

Crossrefs

See A237593 for more comprehensive cross-references re symmetric representation of sigma.

Programs

  • Mathematica
    (* function a237270[ ] and its support functions are defined in A351903 *)
    a373609[n_] := Module[{pL={}, rL={}, k, a, j, c}, For[k=1, k<=n, k++, a=a237270[k]; c=0; For[j=1, j<=Length[a], j++, If[!MemberQ[pL, a[[j]]], AppendTo[pL, a[[j]]]; c++]]; If[c>1, AppendTo[rL, k]]]; rL]
    a373609[7425]