A377654 Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.
1, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 6241, 6561, 6889, 7225, 7569, 7921, 8649, 9025, 9409, 10201, 10609, 11449, 11881, 12321, 12769, 13225, 14161, 14641, 15129, 15625
Offset: 1
Keywords
Examples
The center part of SRS(a(3)) = SRS(25) has area 5, all 3 parts have width 1, and 25 with 3 divisors also belongs to A244579. The center part of SRS(a(7)) = SRS(169) has area 13, all 3 parts have width 1, and 169 with 3 divisors also belongs to A244579. The center part of SRS(a(10)) = SRS(441) has area 21 and width 1, but the maximum width of SRS(441) is 2. Number 441 has 9 divisors and SRS(441) has 7 parts while 21 has 4 divisors and SRS(21) has 4 parts so that 21 is in A244579 while 441 is not.
Crossrefs
Programs
-
Mathematica
(* t237591 and partsSRS compute rows in A237270 and A237591, respectively *) (* t249223 and widthPattern are also defined in A376829 *) row[n_] := Floor[(Sqrt[8 n+1]-1)/2] t237591[n_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]] partsSRS[n_] := Module[{widths=t249223[n], legs=t237591[n], parts, srs}, parts=widths legs; srs=Map[Apply[Plus, #]&, Select[SplitBy[Join[parts, Reverse[parts]], #!=0&], First[#]!=0&]]; srs[[Ceiling[Length[srs]/2]]]-=Last[widths]; srs] t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, row[n]]] widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]] centerQ[n_] := Module[{pS=partsSRS[n]}, Sqrt[n]==pS[[(Length[pS]+1)/2]]]/;OddQ[n] widthQ[n_] := Module[{wP=SplitBy[widthPattern[n], #!=0&]}, wP[[(Length[wP]+1)/2]]]=={1}/;OddQ[n] a377654[m_, n_] := Select[Map[#^2&, Range[m, n, 2]], centerQ[#]&&widthQ[#]&]/;OddQ[m] a377654[1, 125]
Comments