cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064641 Unidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: construct an array in which the first element of each row is 1 and subsequent entries are given by T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1). The last number in row n gives a(n).

Original entry on oeis.org

1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, 16487795, 94393105, 545337200, 3175320607, 18615098837, 109783526821, 650884962908, 3877184797783, 23193307022861, 139271612505361, 839192166392276, 5072534905324615, 30749397292689194
Offset: 0

Views

Author

Floor van Lamoen, Oct 03 2001

Keywords

Comments

Also the number of paths from (0,0) to (n,n) not rising above y=x, using steps (1,0), (0,1), (1,1) and (2,1). For example, the 7 paths to (2,2) are dd, den, end, enen, Dn, eenn and edn, where e=(1,0), n=(0,1), d=(1,1) and D=(2,1). - Brian Drake, Aug 01 2007
For another interpretation as the number of walks of a certain type, see A223092 and the link below. - N. J. A. Sloane, Mar 29 2013
Hankel transform is 3^C(n+1,2). - Paul Barry, Jan 26 2009

Examples

			The array begins
        1
      1   2
    1   5   7
  1   8  22  29
G.f. = 1 + 2*x + 7*x^3 + 29*x^4 + 133*x^5 + 650*x^6 + 3319*x^7 + ...
		

Crossrefs

Delannoy numbers: A008288, table: A064642. Cf. A038764, A223092.
Row sums of A201159.

Programs

  • Maple
    A:= series( (1-x-sqrt(1-6*x-3*x^2)) / (2*x*(1+x)),x, 21): seq(coeff(A,x,i), i=0..20); # Brian Drake, Aug 01 2007
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x-3*x^2])/(2*x*(1+x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • Maxima
    a(n):=sum(binomial(n+i,n)*sum(binomial(j,-n+2*j-i-2)*binomial(n+1,j),j,0,n+1),i,0,n)/(n+1); /* Vladimir Kruchinin, May 12 2011 */
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x*(1-x)/(1+x+x^2)+O(x^(n+2))),n+1)) /* Paul Barry */
    

Formula

G.f.: (1-x-sqrt(1-6x-3x^2)) / (2x(1+x)). - Brian Drake, Aug 01 2007
G.f.: 1/(1-2x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-.... (continued fraction). - Paul Barry, Jan 26 2009
a(n) = sum(i=0..n, binomial(n+i,n)*sum(j=0..n+1, binomial(j,-n+2*j-i-2)*binomial(n+1,j)))/(n+1). - Vladimir Kruchinin, May 12 2011
Recurrence: (n+1)*a(n) = (5*n-4)*a(n-1) + 9*(n-1)*a(n-2) + 3*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3*(sqrt(6)+sqrt(2))*(3+2*sqrt(3))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
G.f.: 1 / (1 - x - (x+x^2) / (1 - x - (x+x^2) / ... )) (continued fraction). - Michael Somos, Mar 30 2014
0 = a(n)*(+9*a(n+1) + 54*a(n+2) + 33*a(n+3) - 12*a(n+4)) + a(n+1)*(+78*a(n+2) + 60*a(n+3) - 27*a(n+4)) + a(n+2)*(+36*a(n+2) + 34*a(n+3) - 14*a(n+4)) + a(n+3)*(+4*a(n+3) + a(n+4)) for all n >= 0. - Michael Somos, Nov 05 2014
a(n) = (-1)^n * (n+1) + Sum_{k=0..n-1} (a(k) + (-1)^k) * (a(n-1-k) + (-1)^(n-1-k)). - Seiichi Manyama, Jul 18 2025

A201075 Irregular triangle read by rows: number of Schroeder paths of length n and weighted area n^2-k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 4, 3, 3, 3, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 10, 7, 6, 4, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 14, 17, 22, 25, 27, 31, 34, 34, 33, 31, 28, 21, 14, 10, 5, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 26, 31, 37, 45, 54
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Comments

0 <= k <= n^2.

Examples

			Triangle begins:
1
1 1
1 1 1 2 1
1 1 1 2 3 4 3 3 3 1
1 1 1 2 3 4 5 7 8 9 10 11 10 7 6 4 1
...
		

Crossrefs

Mirror image of A129179.

Programs

  • Mathematica
    gf = Expand /@ FixedPoint[1 + x # (1 + q Normal@# /. {x :> q^2 x}) + O[x]^7 &, 0];
    Flatten[Reverse[CoefficientList[#, q]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 03 2024 *)

Extensions

More terms from Andrey Zabolotskiy, Jan 03 2024

A201076 Irregular triangle read by rows: number of {0,2}-shifted Schroeder paths of length n and area k.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 3, 6, 7, 7, 5, 0, 0, 1, 2, 3, 6, 10, 13, 16, 20, 19, 15, 8, 0, 0, 1, 2, 3, 6, 10, 16, 22, 29, 39, 48, 53, 56, 57, 46, 30, 13, 0, 0, 0, 1, 2, 3, 6, 10, 16, 25, 35, 48, 66, 85, 106, 127, 147, 167, 179, 178, 168, 146, 103, 58, 21, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Examples

			Triangle begins
1
1
1 2 0
1 2 3 3 0
1 2 3 6 7 7 5 0 0
1 2 3 6 10 13 16 20 19 15 8 0 0
...
		

Crossrefs

Row sums give A052709. Rows converge to A101277.
Cf. S-shifted Schroeder paths for various S: A201075 {0,1}, A201079 {0,2,4,6...}, A201080 {0,1,3,5...}, A201159 {0,1,2}.

Programs

  • Mathematica
    gf = Expand /@ FixedPoint[1 + (q x + q^2 x^2) # (Normal@# /. {x :> q^2 x}) + O[x]^8 &, 0];
    Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 02 2024 *)

Extensions

Row 5 corrected, rows 6-7 added by Andrey Zabolotskiy, Jan 02 2024

A201079 Irregular triangle read by rows: number of {0,2,4,6...}-shifted Schroeder paths of length n and area k.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 4, 6, 7, 7, 5, 0, 0, 1, 2, 4, 7, 11, 14, 18, 20, 19, 15, 8, 0, 0, 1, 2, 4, 8, 12, 19, 26, 35, 43, 52, 57, 61, 57, 46, 30, 13, 0, 0, 0, 1, 2, 4, 8, 13, 21, 32, 45, 61, 81, 101, 125, 146, 167, 183, 194, 191, 178, 146, 103, 58, 21, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Examples

			Triangle begins
1
1
1 2 0
1 2 3 3 0
1 2 4 6 7 7 5 0 0
1 2 4 7 11 14 18 20 19 15 8 0 0
1 2 4 8 12 19 26 35 43 52 57 61 57 46 30 13 0 0 0
...
		

Crossrefs

Row sums give A063020. Rows converge to A015128.
Cf. S-shifted Schroeder paths for various S: A201075 {0,1}, A201076 {0,2}, A201080 {0,1,3,5...}, A201159 {0,1,2}.

Programs

  • Mathematica
    max = 8; s0 = Range[2, max, 2];
    gf = Expand /@ FixedPoint[With[{g = Normal@#}, 1 + q x g (g /. {x :> q^2 x}) + Sum[q^(j^2 - j) x^j Product[g /. {x :> q^(2 i - 2) x}, {i, j}], {j, s0}] + O[x]^max] &, 0];
    Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 02 2024 *)

Extensions

Name and rows 3 and 5 corrected and row 7 added by Andrey Zabolotskiy, Jan 02 2024
Showing 1-4 of 4 results.